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Single-cell variability of CRISPR-Cas interference
and adaptation
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Abstract

While CRISPR-Cas defence mechanisms have been studied on a
population level, their temporal dynamics and variability in indi-
vidual cells have remained unknown. Using a microfluidic device,
time-lapse microscopy and mathematical modelling, we studied
invader clearance in Escherichia coli across multiple generations.
We observed that CRISPR interference is fast with a narrow distri-
bution of clearance times. In contrast, for invaders with escaping
PAM mutations we found large cell-to-cell variability, which origi-
nates from primed CRISPR adaptation. Faster growth and cell divi-
sion and higher levels of Cascade increase the chance of clearance
by interference, while slower growth is associated with increased
chances of clearance by priming. Our findings suggest that Cas-
cade binding to the mutated invader DNA, rather than spacer inte-
gration, is the main source of priming heterogeneity. The highly
stochastic nature of primed CRISPR adaptation implies that only
subpopulations of bacteria are able to respond quickly to invading
threats. We conjecture that CRISPR-Cas dynamics and heterogene-
ity at the cellular level are crucial to understanding the strategy of
bacteria in their competition with other species and phages.
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Introduction

During the last decade, important progress has been made in identi-

fying the sequence of steps and molecular interactions required for

successful adaptive immunity by the model type I-E CRISPR-Cas

system (Datsenko et al, 2012; Swarts et al, 2012; Nu~nez et al, 2015;

K€unne et al, 2016; Dillard et al, 2018; Loeff et al, 2018; Musharova

et al, 2019; Xue & Sashital, 2019; Kim et al, 2020; Vink et al, 2020).

CRISPR (clustered regularly interspaced short palindromic repeats)

immunity involves three main stages beginning with the acquisition

of a spacer, a small piece of DNA derived from a foreign invader

and stored in the CRISPR array for future defence (Bolotin et al,

2005; Barrangou et al, 2007). This array is then transcribed and

processed into small CRISPR RNAs (crRNAs), which guide a surveil-

lance complex, formed from a number of Cas (CRISPR-associated)

proteins, towards the invader DNA (Brouns et al, 2008; Jackson

et al, 2014). For type I-E systems, a 50-CTT consensus PAM (proto-

spacer adjacent motif) sequence flanking the targeted site of the

invader (Deveau et al, 2008; Mojica et al, 2009) allows swift recog-

nition and ultimately degradation of the invader, through a process

called direct interference (Garneau et al, 2010; Westra et al, 2012;

Leenay et al, 2016; Xue & Sashital, 2019). However, invaders can

escape direct interference via mutation within the seed region of the

target site or PAM (Deveau et al, 2008; Semenova et al, 2011;

Fineran et al, 2014). In response, the I-E system can initiate priming,

which promotes accelerated acquisition of new spacers due to a pre-

existing partial match to the invader (Datsenko et al, 2012; Swarts

et al, 2012). Primed adaptation is much faster than naı̈ve adaptation

(preprint: Stringer et al, 2020) and is required for the insertion of a

new matching spacer with a consensus PAM allowing subsequent

invader degradation, which we here refer to as primed interference.

At the level of individual cells, however, much more is unknown.

Interference is a kinetic arms race between invader replication and

degradation, which could result in complex and stochastic dynamics

within single cells. Replication and degradation themselves may also

display variability between cells in the population. For instance,

invader degradation rates can be affected by stochastic processes

such as the expression of CRISPR-Cas components, target localiza-

tion and nuclease recruitment (Semenova et al, 2016; Vink et al,

2020). Priming also depends on many processes in which the

dynamical interplay is unclear, including the production of suitable
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fragments of DNA for spacer acquisition (pre-spacers), the assembly

of adaptation complexes required for further spacer selection and the

processing and insertion of these pre-spacers into the CRISPR array

(Nu~nez et al, 2015; Jackson et al, 2017; Wright et al, 2017; Kim et al,

2020). Elucidating the cellular dynamics and heterogeneity of the

CRISPR-Cas response is critical to understanding interference and

adaptation mechanistically and of direct importance to its natural

function. For instance, upon invasion, cells are thought to have a

limited time window to respond in order to escape invader replica-

tion, protein production and cell death (Davison, 2015; Shao et al,

2015; Kutter et al, 2018; Hampton et al, 2020).

A number of studies have investigated the interference process

by collecting either population averages, or single-cell data on short

time scales (<1 s) (Fineran et al, 2014; Xue et al, 2015; Staals et al,

2016; Jackson et al, 2019; Musharova et al, 2019; Vink et al, 2020).

However, averaging within a population can conceal the variation

between cells and the dynamics within single cells over time

(Spudich & Koshland, 1976; Elowitz, 2002), thus masking the under-

lying dynamics of CRISPR-Cas interference. In addition, investiga-

tions into the adaptation process have provided great insight into

the diversity of spacers acquired (Staals et al, 2016; van Houte et al,

2016), possible mechanisms of target destruction (Datsenko et al,

2012; Richter et al, 2014) and conditions under which adaptation

most frequently occurs within a population (D�ıez-Villase~nor et al,

2013; Amlinger et al, 2017; Høyland-Kroghsbo et al, 2018); how-

ever, these studies could not observe any variation existing in each

step of the adaptation process within individual cells.

Recently, developments in the field have begun to include the

use of time-lapse microscopy to investigate invader establishment

and degradation in single cells (Guan et al, 2017; preprint:

Mamontov et al, 2021). Here, we set out to further these techniques

and investigate and quantify the dynamics and variability of both

the interference and adaptation processes in single-cell lineages.

Using time-lapse microscopy and microfluidic devices, we followed

individual cells over multiple rounds of division while simulta-

neously monitoring CRISPR-Cas protein expression and DNA degra-

dation. Hence, we obtained individual lineages, the genealogical

relations between them, as well as real-time data on the DNA clear-

ance process, instantaneous growth rates, cell sizes and division fre-

quencies of individual cells. We determined that while direct

interference occurs quickly and consistently, clearing the target from

all cells within hours, priming is highly variable and much slower,

taking over several tens of hours for some cells. Further, through

stochastic agent-based modelling we were able to define the adapta-

tion and clearance stages of priming and identified primed adapta-

tion as the source of the variation observed—more specifically the

binding of Cascade to the mutated target DNA, rather than other

complex processes including the integration of new spacer DNA

fragments into the host genome.

Results

Time-lapse microscopy of the CRISPR-Cas response

Using two strains, KD615 (WT) and KD635 (Δcas1,2) (Appendix Table

S1), we investigated priming and direct interference, respectively. The

strains contain an array with a leader, two repeats and a single

previously characterised spacer, spacer8 (SP8) (Swarts et al, 2012;

Musharova et al, 2019) (Fig 1A–C). In addition, these strains are engi-

neered to control cas gene expression using arabinose and IPTG
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Figure 1. Investigating single-cell behaviour during CRISPR-Cas defence
using time-lapse microscopy.

A Schematic of the direct interference process. The cell contains a I-E CRISPR-
Cas system controlled by the lacUV5 (cas3) and araBp8 (cas operon)
inducible promoters (black arrows), as well as the CRISPR array with a
single spacer targeting the plasmid (grey box). The plasmid encodes YFP
and contains a sequence matching the spacer (grey), flanked by a
consensus PAM (blue). Immediate targeting by the CRISPR-Cas system
results in degradation of the plasmid and loss of the YFP in the cell.

B To invoke priming, the 50-CTT consensus PAM, flanking the target sequence
located on the plasmid, is mutated by one nucleotide to a non-consensus
PAM 50-CGT.

C Schematic of the priming process. (Left cell) A mutation of the PAM (red)
flanking the target sequence means the spacer in the CRISPR array can no
longer initiate direct interference. Fragments in the cell can be captured
and processed by Cas1,2 (light blue). (Right cell) The Cas1,2 complex
integrates the fragment into the CRISPR array as a new spacer (purple),
which matches the target plasmid and results in degradation and loss of
YFP in the cell.

D To allow long-term imaging, cells are grown in a microfluidic chip that
allows constant media supply. Cells within a single well are imaged
frequently in phase contrast and fluorescence allowing segmentation and
tracking of lineage history across frames.

E Variation in features of reconstructed single-cell lineages (left) such as size
(middle) and fluorescence concentration (right) are continuously monitored
enabling further investigation.
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induction, and hence initiation of the CRISPR-Cas response. Target

plasmids were engineered to encode a constitutively expressed YFP or

CFP fluorescent protein (Kremers et al, 2006) and contain a target

sequence that is complementarity to SP8 in the CRISPR array, allowing

direct monitoring of target DNA presence in individual cells over time

(Fig 1A–C) (Appendix Table S1). In order to investigate the direct

interference process, we flanked the target sequence with a 50-CTT
consensus PAM (Mojica et al, 2009) (Fig 1A and B). Further, to inves-

tigate the priming response we mutated the PAM to 50-CGT (Fig 1B

and C), a mutation known to allow mobile genetic elements (MGE) to

escape interference and invoke a primed adaptation response (Seme-

nova et al, 2011; Datsenko et al, 2012; Musharova et al, 2019).

The use of a microfluidic device (Wehrens et al, 2018) enabled

fluorescence time-lapse imaging for over 36 h with the option for

media exchange (Fig 1D). The device contained chambers allowing

observation of a single layer of cells, constant medium supply,

removal of cells that no longer fit the chamber due to growth and

control of intracellular processes via induction. Image analysis soft-

ware was used to segment and track all cells and their fluorescence

signals, thus allowing the reconstruction of lineage trees in a defined

region at the bottom of the chamber (Fig 1D and E) (Young et al,

2012; Kiviet et al, 2014; Wehrens et al, 2018).

Direct interference is fast and synchronous

We first investigated the direct interference response (Fig 1A). Prior

to cas gene induction, the images showed high YFP fluorescence in

all cells, confirming the presence of the target plasmid (Fig 2A)
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Figure 2. Variation in target plasmid clearance times is much larger when CRISPR adaptation is required.

A, B Clearance of a target with a consensus PAM by direct interference. Overlay of fluorescent and phase contrast time-lapse images. The presence of the target plasmid
is tracked by its YFP production (A). Reconstructed lineage traces of the imaged population (A) from induction of the CRISPR-Cas system over time (grey) lineages
show some variation in plasmid clearance times (coloured) (B).

C Production rate (black line) of the YFP is used to determine the plasmid loss time, PLT, (black dot, dashed line) which is the time from induction until detection of
loss (black arrow) allowing earlier detection than using the mean fluorescence (purple line). The time from first targeting of a single plasmid to the PLT (dashed
line) is defined as the clearance time (CT, purple arrow).

D Distribution of PLTs determined by the production rate during direct interference (n = 250 loss events).
E, F Clearance of a matching target with a mutated PAM via priming. Overlay of fluorescent and phase contrast time-lapse images as in (A). Reconstructed lineage

traces of the imaged population (E) (grey). Lineages show large variations in the time taken to clear the plasmid (coloured) (F).
G Distribution of PLTs via priming calculated with the production rate (n = 149 loss events).

Source data are available online for this figure.
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which decreased upon induction, indicating CRISPR-Cas-mediated

degradation of the target DNA (Fig 2A, Expanded view Movie EV1).

When the plasmid did not contain a target sequence (pControl), YFP

levels did not decrease for over 35 h (Fig EV1A), indicating

targeting by CRISPR-Cas is required for plasmid loss in this set-up.

The mean YFP fluorescence per cell unit area (which estimates

the YFP concentration) showed the decrease started after about 1 h

of induction and then exhibited a smooth monotonic decline with-

out substantial cell-to-cell variability (Fig 2B). Note that traces end

upon the cells exiting the observation chamber. CRISPR-mediated

degradation of the target was thus efficient and synchronous, and

in the case of a 5-copy plasmid could overcome the plasmid replica-

tion and copy number control. Hence, we surmised that the YFP

fluorescence may decrease exponentially, as the YFP proteins are

diluted exponentially due to volume growth upon clearance of the

last plasmid. Indeed, we found the fluorescence decrease to be expo-

nential (Fig EV1B).

Direct interference variability between cells also appeared limited

(Fig 2B). To address it more directly, we quantified the moment all

plasmids are cleared by determining the YFP production rate as the

change in total cellular fluorescence per unit of time (Levine et al,

2012). The production rate scales with the number of target DNA

copies and shows the expression timing more precisely by suppres-

sing slow dilution effects. Indeed, the YFP production rate decreased

rapidly and reached zero (the background level of cells not expres-

sing YFP) when the mean fluorescence was still close to its maxi-

mum (Fig 2C). This moment was identified as the plasmid loss time

(PLT) (Fig 2C). PLT was narrowly distributed between about 1 and

2.5 h (Fig 2D, CV2 = 0.055). Hence, in all cells the target was

cleared. The clearance was rapid, taking between 1 and 3 genera-

tions, and sometimes occurred in the same generation in which the

CRISPR-Cas response was initiated by induction (Appendix Fig S1).

Primed adaptation is highly variable

Next, we studied plasmid clearance after adaptation from a target

with a mutated PAM (Fig 1C). Most notable in these priming experi-

ments was the heterogeneity between lineages, with the clearance

process ranging from 2 to 30 cellular generations (Appendix Fig S1).

Upon induction, some lineages showed a decreasing trend in fluo-

rescence as early as 4 h (Fig 2E and F, Expanded view Movie EV2),

while others remained fluorescent after 35 h (Fig 2F). The PLTs

were indeed broadly distributed and displayed a long tail towards

large values (Fig 2G, CV2 = 0.458). Of note, we did not observe

plasmid clearance in the same generation in which the CRISPR-Cas

system was induced (Appendix Fig S1).

The shapes of the YFP declines were exponential, similar to the

direct interference data (Figs 2B and F, and EV1B). When aligned at

the PLT, the average profile of all production rate traces for direct inter-

ference and priming show a similar trend both right before and after

plasmid loss is detected (Fig EV1B). In both cases, the onset of the

decrease is about 60 min before PLT, thus enabling us to estimate

duration of the target clearance process, from here on referred to as CT

(clearance time). In priming, clearance therefore contributes much less

to PLT variability than the preceding processes (Fig 2G). These obser-

vations suggest that new spacers preceded by a consensus PAM are

indeed acquired and that the CRISPR adaptation phase is responsible

for the observed temporal variability (Fig 2G).

Spacer acquisition in the population was indeed confirmed by

PCR of the CRISPR array in cells collected from the microfluidic

device (Appendix Fig S2). Spacer acquisition was not observed with

the Δcas1,2 strain, consistent with Cas1 and Cas2 being required for

acquisition (Yosef et al, 2012). In the absence of Cas1 and Cas2,

however, low-frequency plasmid loss was observed in 1.4% of the

lineages over a 35-h period (Fig EV1C). Hence, complete clearance

is possible with a mutated PAM, even if highly inefficient.

Genealogical relations impact the CRISPR-Cas response

To study the role of genealogy in the CRISPR-Cas response, we took

a more in-depth look at the lineage history before plasmid loss

(Fig 3A). For primed adaptation, some subtrees showed all plasmid

loss events occurring close together; however, most subtrees

showed a wide PLT variability (Fig 3B, black dots), in line with line-

ages responding independently. However, statistical analysis

showed that sisters cleared their plasmids within the same cell cycle

more frequently than expected at random and more strongly so for

priming than for direct interference (Fig 3C). Hence, inheritance

plays a role in the CRISPR-Cas response (Fig 3C).

These data led us to hypothesise that in priming, plasmid loss

times in sisters correlate due to spacer acquisition occurring in the

mother, after which plasmid degradation (primed interference) con-

tinues into the daughters. If true, the detection of plasmid loss in

each daughter will likely be close in timing, with the moment in the

cell cycle for both daughters determined by when spacer acquisition

occurred within the mother’s cell cycle. This would result in a ran-

dom distribution of loss times throughout the cell cycle for each pair

of daughters in the experiment. Conversely, when loss in sisters

was not correlated (i.e. only one sister cleared the plasmid), we

believe both acquisition and clearance managed to occur in the

same cell cycle. In this case, we would expect clearance to occur at

the end of the mother’s cell cycle. We base this on our earlier find-

ing that on average ~60 min (CT) is required for the interference

process (Fig EV1D), indicating adaptation must occur at the begin-

ning of the cell cycle and be directly followed by swift interference.

To test this hypothesis, we divided the cell cycle into five equal frac-

tions and recorded each loss event in the appropriate fraction.

Indeed, loss events in just one sister occurred more frequently

towards the end of the cell cycle (Fig 3D). In contrast, the moments

of plasmid loss were more randomly distributed in the case where

both daughters lost the plasmid (Fig 3D). Altogether, this indicated

that loss likely takes place more frequently in sisters than cousins

(Fig 3C) because adaptation occurred in the mother.

The growth rate has opposing effects on adaptation
and interference

To study whether stochastic variations in cell cycle parameters

affect the CRISPR-Cas response, we developed a ranking analysis to

rank each “loss-lineage” that successfully cleared the plasmids rela-

tive to the “non-loss lineages” that had not cleared the plasmids at

that same moment in time (Fig 3E). As cellular features such as the

growth rate might not be in a steady state due to changes in the

environment, comparing loss lineages that cleared the plasmids at

different times over the course of the 36-h experiment could result

in the detection of a trend in growth not related to the CRISPR-Cas
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Figure 3. Growth rate and interdivision times have an influence on direct interference and priming.

A Schematic of key analysis structure and terminology. Closed circles indicate cells which clear the plasmid before division, open circles indicate cells which have not
yet lost the plasmid.

B A comparison of 9 subtrees constructed from induction. The subtrees consist of reconstructed fluorescence lineage traces (grey). Loss lineages are indicated in purple
with the PLTs indicated by closed black dots.

C The observed fraction of loss in cells (green) during direct interference (left) or priming (right) related as either sisters (DI: n = 171, P: n = 98 loss events) or cousins
(DI: n = 130, P: n = 138 loss events) is plotted against the fraction of expected loss events (blue) in related cells when the events are randomised in the same time
window. The significance of these values was computed using a Poisson binomial test.

D The cell cycle was divided into 5 equal fractions and plasmid loss times are plotted in the corresponding fraction where one sister alone cleared the plasmid (left,
n = 101) or both sisters cleared the plasmid (right, n = 24).

E Schematic explaining the rank-based analysis approach. For each detected plasmid loss event (left, black circle) the cell feature, that is, the growth rate for the loss-
lineage of interest (right, green) is averaged over a lookback window (right, dashed rectangle) and then ranked amongst all averages of non-loss lineages in the same
window (purple, right).

F Boxplots of percentile rankings for growth rate, average size and interdivision time over a lookback window of 30 min for all loss lineages that cleared the target. Left,
for clearance of a consensus target (green, n = 250 biological replicates) the lookback window started 30 min before plasmid loss and ended at the PLT. Right, for
clearance of a mutated target (blue, n = 149 biological replicates), the lookback window started 90 min before plasmid loss and ended 60 min before loss. The
median percentile ranking of loss lineages is indicated by a line and value, categories in which this value was significantly different from a ranking in the 50th

percentile as computed by a 2-sided binomial test are indicated in red followed by asterisks. We follow the standard assumptions of a binomial test, including
dichotomy of the items and a sample size significantly smaller than the population size. The bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered outliers.

Data information: (C, F) ****P < 0.0001, ***P < 0.001, **P < 0.01.
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response. The ranking was based on growth rate averaged over a

30 min “lookback window” (Fig 3E), determined using autocorrela-

tion times which are a measure of the rate of change of a time

series. The autocorrelation coefficient of the growth rate is no longer

significant beyond 30 min, thus indicating measurements more than

30 min apart are unlikely to be correlated (Appendix Fig S3). In

direct interference, the “loss lineages” exhibited a higher median

growth rate than “non-loss lineages”, with their growth rate ranking

in the 63rd percentile (P = 0.01) (Fig 3F). These lineages also

showed shorter interdivision times (P = 0.0001), but not a differ-

ence in cell size (Fig 3F). These results were robust over a range of

lookback window sizes (see Appendix Fig S4). We stress that

growth is likely only one of the many factors affecting the CRISPR-

Cas response, which is also reflected by the broad ranking distribu-

tions (Fig 3F). Overall, the analysis indicated that faster growth in

coordination with more frequent cell division has a positive effect

on the rate of clearance of a consensus target.

Primed adaptation showed a different picture. To probe the

effects on spacer acquisition, which occur about 60 min before plas-

mid loss, we used a lookback window between 90 and 60 min

before the PLT. While cell size and interdivision time did not show

an effect (no significant deviation from the 50th percentile) the

growth rate did, with loss lineages growing more slowly compared

with non-loss lineages (38th percentile, P = 0.01) (Fig 3F). This was

robust to changes in the lookback window (Appendix Fig S5). Alto-

gether, these findings indicated that, on average, slower-growing

cells achieved faster plasmid clearance through priming.

Cascade concentrations impact the CRISPR-Cas response

Apart from physiological determinants like growth, Cascade expres-

sion levels may influence the speed of CRISPR-Cas defence, for

instance via growth rate fluctuations or the random partitioning of

molecules at division (Schwabe & Bruggeman, 2014). To investigate

this, we fused mCherry (RFP) to the N terminus of the Cas8e

subunit of Cascade (Vink et al, 2020) (Fig 4A). Using single-particle

fluorescence calibration, we estimated that the cells contain on aver-

age about 200 Cascade molecules/µm2 (Figs 4B and EV2). Hence,

we quantified the (stochastic) variations in Cascade abundance

within single-cell lineages upon induction (Fig 4B).

Cascade levels fluctuate on a longer timescale than the cell cycle

(200 min, Appendix Fig S6) and are strongly correlated between sis-

ters and cousins (R = 0.89 and 0.62, respectively, Fig EV3), indicating

that Cascade levels are stable over several generations. We reasoned

that lineages with high Cascade concentrations may target and clear

the plasmids faster. Hence, we performed time-lapse experiments and

used the ranking approach, now ranking lineages based on the average

Cascade in a window of 60 min prior to plasmid loss. For direct inter-

ference, loss lineages exhibited significantly higher Cascade levels than

non-loss lineages and ranked in the 70th percentile (P = 0.03, Fig 4C).

Conversely, no differences in Cascade levels were observed between

loss and non-loss lineages for priming, with the former ranking in the

56th percentile (P = 0.32, Fig 4C).

In priming, however, the target search by Cascade occurs over a

longer period of time prior to achieving plasmid loss (Fig 2F), likely

rendering the ranking approach less suitable due to a limited look-

back window. Hence, to test this notion, we investigated the correla-

tion between Cascade search hours and the PLT for each lineage at

time points onward from induction. Cascade search hours are defined

as the sum of hours spent by all Cascades molecules in the cell

searching for the target and are determined from the cumulative RFP,

that is, the area under the RFP concentration curve of each lineage

from induction until a point of interest (Appendix Fig S7). One may

expect that a single-cell lineage which has a high number of Cascades

for a short period of time close to induction could undergo adaptation

earlier than a cell which has a lower number of Cascades over a lon-

ger period of time, or vice versa (Appendix Fig S7). To this end, we

carried out this analysis to determine whether spacer acquisition may

be governed by a requirement for a number of Cascade search hours

rather than a peak in copy number in the cell.

At 0–2-h post-induction, PLT and Cascade search hours indeed

correlated negatively for direct interference but not for priming,

indicating cells with a higher sum of Cascade search hours lost the

plasmid earlier (Fig 4D). This result is in line with our earlier find-

ings (Fig 4C) and supports that stochastic variations in Cascade

expression levels affect direct interference. For the priming process,

the impact of Cascade levels appeared weaker, and no significant

correlation was found between PLT and Cascade search hours prior

to the loss (Fig 4D). This may suggest that neither the total search

hours of Cascade nor the instantaneous expression levels play a

detectable role in the determination of when plasmid loss occurs

during priming. We hypothesise this could be due to the underlying

processes being less synchronised in time in comparison with

direct interference and hence masked by other stochastic variations

in our set-up.

Low Cascade-target binding affinity can generate CRISPR-Cas
response variability

To gain insight into the variability and dynamics of the CRISPR-Cas

defence, we developed an agent-based simulation framework. Adap-

tive immunity in bacterial populations has been modelled previ-

ously (Iranzo et al, 2013; Bradde et al, 2017; Martynov et al, 2017),

but to our knowledge none describe variability or single-cell behav-

iour. Briefly, we simulated 100 cells, their growth and division, plas-

mid maintenance, stochastic protein production and partitioning at

division, spacer acquisition and target DNA degradation (Fig EV4,

see Materials and Methods for details). We found that with these

minimal model ingredients and by only changing the Cascade-target

binding affinity due to the PAM mutation, the model reproduced

both the low variability of direct interference (Figs 5A and B, and

2B and D) and the high variability of priming (Figs 5C and D, and

2F and G) from the experimental conditions. Specifically, by fitting

the model to all available experimental data (Figs 2 and EV1C;

Appendix Fig S8), we found a Cascade-target binding affinity reduc-

tion in two orders of magnitude for the PAM mutation, which is

consistent with previous work (Jung et al, 2017; Cooper et al, 2018)

(Appendix Table S5).

The priming process can be conceptually understood as a two-

step process, adaptation followed by interference, where the low

probability of the first step creates the broadness of the PLT distribu-

tion (Materials and Methods). We hypothesised that variation of the

primed adaptation response could originate from the low-affinity

target search of Cascade, or the spacer integration. In the agent-

based model, we varied the rates of these two processes by a factor

of 100, while keeping the Cas3-mediated target destruction constant,
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and found that slow spacer integration alone was not enough to

explain the observed variability (Fig 5H). Conversely, reducing the

Cascade-target binding affinity within the model is both necessary

and sufficient to reproduce the observations (Fig 5E–H) and is

required to generate pre-spacers.

Competition between adaptation and low-level interference

In priming, low Cascade-target affinity and resulting sporadic target

degradation can yield a low-level interference prior to adaptation,

which in turn provides a continuous source of target DNA fragments

that can act as pre-spacers (K€unne et al, 2016). Hence, we wondered

whether target abundance affects this process. For direct

interference, as expected, we found that the plasmid loss time (PLT)

increased monotonically in simulated trajectories as the average

number of targets varies from 1 to 50 (Fig 5I, see Appendix Fig S9

for full range of distributions). Simulations of priming did not show

such a monotonic trend: the PLT first went up, then down and

finally up again (Fig 5I, Appendix Fig S10). This behaviour could be

explained by splitting priming into the adaptation and interference

processes (Fig 5J): while primed interference logically only speeds

up with fewer targets, primed adaptation initially slows down with

fewer targets because of the resulting fewer pre-spacers, but then

speeds up for the lowest number of targets, because low-level inter-

ference is now sufficiently efficient, in combination with unequal

partitioning upon division (Appendix Fig S11). Indeed, our
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Figure 4. Cellular Cascade concentrations influence the direct interference response.

A Schematic of the experimental set-up adapted to allow visualisation of target presence (CFP) and Cascade levels (mCherry) simultaneously. The expansion indicates
the mCherry fluorescent tag was fused to the N terminus of the cas8e subunit.

B Cascade concentration of single-cell lineages over time from induction. The surface area of E. coli cells in our experiments is approximately 2 µm2, resulting in an
estimate of approximately 500 molecules of Cascade per cell at steady state.

C Cascade concentrations were averaged over a 60-min lookback window from the plasmid loss event for all loss lineages during direct interference (green, n = 46
biological replicates) or priming (blue, n = 32 biological replicates). The Cascade concentration of the loss lineages was ranked as percentile amongst the non-loss
lineages and plotted here. The median percentile ranking of loss lineages is indicated by a line and value, categories in which this value was significantly different
from a ranking in the 50th percentile as computed by a 2-sided binomial test (*P < 0.05) are indicated in red followed by an asterisk. We follow the standard
assumptions of a binomial test, including dichotomy of the items and a sample size significantly smaller than the population size. The bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers.

D The Pearson correlation coefficient of plasmid loss time versus total cumulative Cascade concentration at that moment is plotted every 5 min (DI) or 10 min
(Priming) starting from induction of the CRISPR-Cas system. The plotted line for both a target with a consensus PAM (green) and target with a mutant PAM (blue) are
enveloped by a 95% confidence interval. Darker shading indicates where the correlation coefficient is significantly different from zero (Student’s t-test, P < 0.05).
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experiments also showed such clearance of a 5-copy target by low-

level interference without spacer acquisition (Appendix Fig S1).

This alternative pathway competes with priming when there are few

targets (Fig 5K) and might explain the trend in Fig 5J showing faster

loss at 1 target as compared to 5 targets. These findings suggest that

target abundance affects the balance between primed adaptation

and primed interference, resulting in a non-monotonous trend for

the target clearance probability.
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Cascade expression stochasticity can accelerate
CRISPR adaptation

Our experiments showed that CRISPR-Cas defence is affected by

Cascade expression (Fig 4C and D) which is stochastic in nature

(Fig 4B). However, due to the inducible promoter set-up in our

experiments, variability in Cascade levels may be lower than in a

natural setting. To investigate the possible implications, we changed

the level of gene expression variability for Cascade to exhibit 100-

fold stronger expression bursts while maintaining average Cascade

concentrations (see Materials and Methods for details). For direct

interference simulations, this increased variability resulted in a

higher mean PLT: while some cells could clear all targets earlier,

many cells required more time to clear all targets as compared to

lower-variability Cascade expression (Appendix Fig S12). Surpris-

ingly, for priming the mean PLT became lower when the Cascade

variability increased (Fig 6A). The primed interference phase

showed a trend similar to direct interference: a broadening of the

PLT distribution yielding a slow-down on average (Fig 6B). How-

ever, the entire distribution shifted to lower values for primed adap-

tation (Fig 6C), yielding an overall speed-up. For mutated PAMs,

pre-spacer production critically depends on high Cascade levels,

even if transient, as the cumulative probability of a pre-spacer inte-

gration event depends on the Cas concentration in a highly non-

linear fashion. In Appendix Fig S14, we show how this non-linear

dependence results in an increased probability of adaptation for

cells with high Cascade variability as compared to cells with low

variability, while having equal average Cascade concentrations.

Discussion

In this study, we have investigated a previously unexplored question:

what are the dynamics and variability of the CRISPR adaptation and

interference responses in individual cells? Our time-lapse microscopy

approach allowed real-time monitoring of invader presence, cell traits

and inheritance in single-cell lineages. We found that direct interfer-

ence, despite its dependence on various stochastic processes and

poorly understood competition between replication of invading nucleic

acids and degradation by CRISPR-Cas systems, is notably deterministic

and efficient, with invader DNA clearance achieved in all cells within

1–3 generations. Conversely, the priming CRISPR-Cas response was

highly variable, ranging from 2 to 30 generations before clearance. Our

data show that direct interference and primed interference can in fact

occur on comparable time scales and identify the adaptation phase of

priming as the origin of the variation. Further, our direct observation

of the CRISPR-Cas action and modelling approach revealed several fac-

tors that impact CRISPR-Cas response variability. The interaction

between Cascade and the target DNA, which is characterised by a low

affinity owing to the PAM mutation, represents a key source of

◀ Figure 5. Results from the stochastic agent-based model of CRISPR adaptation and interference.

A–D Example trajectories showing fluorescence concentration produced by plasmid containing cells simulated with the agent-based model for the direct interference
(A) and priming condition (C) and corresponding target loss distribution (B,D, respectively).

E–H Example trajectories from 4 different parameter combinations. High Cascade affinity (F,H) corresponds to an increase in target binding by a factor of 100 as
compared to low Cascade affinity (E,G), slow integration (G,H) represents a 100-fold reduction in the spacer integration rate as compared to fast integration (E,F).

I Mean target loss time of the population as a function of the average target copy number per cell for direct interference (green) and priming (blue).
J Breakdown of average time spent on primed adaptation (blue) and primed interference (green) for cells that clear targets through priming, for target copy numbers

in the range 1-50.
K Schematic of alternative target loss pathways. At low copy numbers, targets can be completely cleared through low-level interference, which becomes increasingly

rare as copy numbers increase. The priming process shows a u-shaped relationship with the target copy number, as a result of adaptation becoming faster as
target copy numbers increase, and time required for interference increasing with target copy number.
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A Target loss time distribution for two different levels of Cascade concentration variability for priming. At low variability (blue) Cascade proteins are produced in
frequent, small bursts, whereas at high variability (green) proteins are synthesised more sporadically in large bursts (100-fold increase), keeping average Cascade
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B, C The variability of primed interference times (B) for high Cascade variability (green) increases as compared to low Cascade variability (blue), whereas the variability
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heterogeneity in the adaptation process of the priming response, rather

than the complex spacer integration process.

For direct interference, we found our observed degradation time

of ~90 min on average for the consensus target plasmids to be on a

comparable time scale to previous work (Guan et al, 2017) taking

into account the differences in experimental set-up including but not

limited to: the number targeting spacers, copy number of targets

and differences in Cas protein induction. While in agreement with

the work of Guan et al, 2017, we found that cell size was not an

influential factor in the speed of target degradation; we additionally

found that cells that cleared the target DNA earlier, grew and

divided faster than the population mean. This may be explained by

the fact that faster growth is known to reduce plasmid copy num-

bers (Lin-Chao & Bremer, 1986; Klumpp, 2011).

For priming, the reverse was found. Cells that adapted and cleared

the target DNA earlier grew more slowly than the population mean.

From this, we conjectured that slower growth may lead to more

spacer acquisition events or that spacer acquisition may cause slower

growth of cells. We speculate that the first explanation is most likely

explanation may play a role due to copy number maintenance mech-

anisms, which result in higher concentrations of target plasmids in

slow-growing cells (Ingmer et al, 2001). This hypothesis was further

supported by the model which showed that adaptation occurs more

efficiently in the presence of a higher number of targets (Fig 5J).

While in our set-up an effect of Cascade concentration on priming

could not be detected, we note that slower-growing cells had higher

Cascade abundance (Fig EV5), suggesting that Cascade levels may

play a role in combination with other factors enhanced by slow

growth. Slow growth may simply provide more time to the cell to

locate the target and facilitate spacer insertion before interruption by

cell division (Høyland-Kroghsbo et al, 2018). In line with this idea,

recently published studies on primed CRISPR adaptation in I-F sys-

tems in Pseudomonas aeruginosa have found a causal link between

reduced bacterial growth rates and increased spacer acquisition

(Dimitriu et al, 2022). This finding was attributed to slower phage

development induced by bacteriostatic antibiotics, allowing more

time for cells to acquire spacers especially in the late-exponential and

early-stationary phases, when cells are presumably growing slower

(Amlinger et al, 2017), and in slow-growing populations when com-

pared directly to faster-growing populations (Høyland-Kroghsbo et

al, 2018). Our findings together with these studies indicate that slow

growth caused by any environmental change or cellular stress may in

fact be beneficial to a cell trying to undergo adaptation.

Our findings suggest that target copy number influences the effi-

ciency of spacer acquisition, which has implications for phage inva-

sion. It implies that one genome copy of a single virulent phage

with an escape PAM may not lead to efficient CRISPR adaptation.

However, upon replication of the phage genome, it may become

abundant enough, though at this point in time it is likely that

primed interference with a new spacer cannot successfully eliminate

a virulent phage before cell lysis (Hynes et al, 2014; Davison, 2015;

Severinov et al, 2016). Despite this, it has been shown bioinformati-

cally that priming by type I systems is widespread in nature (Nichol-

son et al, 2019), especially against temperate phages (Nobrega et al,

2020). Such events could occur due to low-level interference, in

which a cell is able to simultaneously clear the invader while pre-

sent as a single copy and acquire a spacer from the fragments pro-

duced. This would result in the immunisation of a single cell in the

population, ultimately leading to a subpopulation of resistant cells

that could limit further propagation of the same phage. Such a phe-

nomenon may be more likely to occur when a defective phage

infects the cell (Hynes et al, 2014).

The variation existing between single cells in a population is

remarkable. Stochasticity or noise in gene expression and cellular

components has been demonstrated to play crucial roles in many

cellular processes (Balaban et al, 2004; Moormeier et al, 2014;

Uphoff et al, 2016). We anticipate that the dynamics and heteroge-

neity of the CRISPR-Cas system, as studied here, play an important

function in strategies that bacteria exploit and evolve in their contin-

uous competition with phages, as well as with other species. For

instance, CRISPR-Cas could contribute to bet-hedging strategies

(Acar et al, 2008), in which subpopulations develop to combat

changes in the environment, such as phage exposure. A distinct sub-

population in which Cascade is highly expressed could allow faster

elimination of an invading phage and subsequent re-population.

This may in turn increase the fitness of the population, by reducing

the overall burden of CRISPR-Cas expression and risk of autoimmu-

nity (Westra et al, 2015; Staals et al, 2016) and hence outcompete

other bacterial strains. While such a strategy may not guarantee

single-cell survival, it is at large beneficial for the population as a

whole. Indeed, previous studies have shown CRISPR-Cas immunity

in single cells acts to limit phage propagation throughout the popu-

lation in an abortive infection-like manner (Strotskaya et al, 2017;

Watson et al, 2019; preprint: Lopatina et al, 2020). On the contrary,

the survival of only a subpopulation of cells may result in popula-

tion bottlenecking and an overall loss of diversity (Moxon & Kussell,

2017). This may be disadvantageous in terms of spacer diversity,

where it has been shown that populations containing a range of

spacers are better able to combat and even facilitate the extinction

of new invaders (van Houte et al, 2016; Martynov et al, 2017). Fur-

ther, we cannot discount that a more susceptible subpopulation of

cells may lead to higher overall phage titres and a larger overall

threat to the population.

While a number of studies have thoroughly investigated CRISPR-

Cas systems through population and single molecule-based experi-

ments (Barrangou et al, 2007; Marraffini & Sontheimer, 2008; Richter

et al, 2014; Patterson et al, 2016; Staals et al, 2016; Amlinger et al,

2017; Strotskaya et al, 2017; Høyland-Kroghsbo et al, 2018; Mush-

arova et al, 2019; Watson et al, 2019; Xue & Sashital, 2019), these find-

ings do not provide insight into the cell-to-cell variability. Our work,

along with others (Guan et al, 2017; preprint: Mamontov et al, 2021),

has begun to bridge this gap demonstrating how important the dynam-

ics of CRISPR-Cas systems are to their functioning and the outcome of

populations facing a threat. Further investigation into different

CRISPR-Cas types and classes, fluctuating environments (Nguyen et al,

2020), and conditions supporting the formation of subpopulations

(Spormann, 2008) will enhance the understanding of CRISPR-Cas

dynamics on both the molecular and population scale.

Materials and Methods

Cloning

Plasmid pTU166 targeted by KD615 and KD635 was created by ampli-

fying the streptomycin resistance cassette from pCDFDuet-1 with
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primers BN831 and BN832 to add a 50CTT-PS8 tail. The backbone of

pVenus was amplified using primers BN833 and BN834, and both

products were restricted with KpnI and HindIII enzymes. Overnight

ligation at 16°C and transformation into DH5ɑ resulted in colonies

selected to contain the plasmid. Plasmids pTU190 and pTU193 were

created by PCR amplification of pTU166 using primer BN911 in combi-

nation with BN912 or BN891, respectively. Products were restricted

with SalI, ligated and transformed into DH5a. Target plasmids pTU389

and pTU390 were PCR amplified from plasmid pTU265 a derivative of

pVenus containing CFP using primers BN2278 in combination with

BN2275 or BN2276, respectively. Products were restricted with NcoI,

ligated and transformed into DH5a. All plasmids were confirmed by

Sanger sequencing (Macrogen). All plasmids used are listed in Appen-

dix Table S1. Primers used are listed in Appendix Table S2.

Creation of strains KD615mCherry-Cas8e
and KD635mCherry-Cas8e

Strains were created using lambda red homologous recombination

(Datsenko & Wanner, 2000). Plasmid pSC020, containing both

Lambda red and the Cre-recombinase, was transformed by electro-

poration into strains KD615 and KD635. Strains were recovered at

30°C for 1.5 h and plated on media containing 100 μg/ml ampicillin.

Transformants were then grown overnight in liquid medium at

30°C, with selection, and made competent the following day by

inoculating 50 ml with 500 μl of overnight culture. Once the cells

reached, an OD600 of 0.2 a final concentration of 0.2% L-Arabinose

(Sigma-Aldrich) was added and cells were grown for another 1.5 h

and subsequently washed with pre-cooled 10% glycerol.

The mCherry-cas8e G-block (IDT) (Appendix Table S3) based on

the design used in (Vink et al, 2020) was resuspended with ddH2O

to a concentration of 50 ng/µl and transformed into the competent

cells by mixing 2 μl DNA with 50 μl of cells and recovering at 30°C
for 1.5 h. After recovery, cells were plated undiluted with selection

for kanamycin and ampicillin. PCR-verified colonies were then

grown in liquid culture with 1 mM IPTG at 37°C to promote the loss

of the kanamycin resistance cassette and pSC020. Individual colo-

nies were screened for plasmid loss by patching each colony onto

three plates containing no antibiotics, only kanamycin and only

ampicillin. Colonies exhibiting no resistance were then PCR

screened with primers (Appendix Table S2) BN2204 and BN2205 for

the presence of the mCherry-Cascade fusion. Strains were confirmed

by Sanger sequencing (Macrogen).

Growth conditions

All strain and plasmid combinations (Appendix Table S1) used were

grown at 37°C, shaking at 180 rpm, prior to microscopy. To avoid

autofluorescence under the microscope, a minimal M9 media was

used containing the following supplements; 2% glycerol (Sigma-

Aldrich), 1X EZ Supplements (M2104 Teknova), 20 μg/ml uracil

(Sigma-Aldrich), 1 mM MgSO4 (Sigma-Aldrich) and 0.1 mM CaCl2
(Sigma-Aldrich), from here on called M9 media.

Microfluidic device

The device used was developed by D.J. Kiviet in the Ackermann lab-

oratory and has been previously used in the Tans laboratory

(Wehrens et al, 2018). The device contains a main flow channel

23.5 µm high and 200 µm wide that splits into two 100 µm wide flow

channels of the same height. Perpendicular to these flow channels

are wells with a height of 0.75 µm, widths of 1 × 80 µm, 1 × 60 µm,

2 × 40 µm, 3 × 20 µm, 3 × 10 µm, 3 × 5 µm and depths of 60, 30,

50 and 40 µm. These well sizes are repeated five times and are the

location where the growth of microcolonies occurs during an experi-

ment. The PDMS devices were made by casting them into an epoxy

mould, a gift from D.J. Kiviet and the Ackermann laboratory.

The PDMS device was produced by mixing polymer and curing

agent (Sylgard 184 elastomer, Dow Corning) in ratio of 1 ml of cur-

ing agent to 7.7 g of polymer. This mixture was poured into the

epoxy mould, and air bubbles were subsequently removed by use of

a desiccator for 30 min followed by baking at 80°C for 1 h. After

baking, the device can be carefully removed from the mould with

the aid of a scalpel and holes were punched for liquid in- and out-

lets. For use under the microscope, the PDMS chip was covalently

bound to a clean glass coverslip. This was done by treating both the

PDMS and glass surface with 5–10 sweeps of a portable laboratory

corona device (model BD-20ACV, Electro-Technic Products). After

treatment, the chip was placed carefully onto the glass slide and

gently tapped to facilitate full contact between the PDMS and glass

surface. Finally, the device was baked for another 1–2 h at 80°C and

stored until the experiment was started.

Loading and filling of microfluidic wells

Cells were initially grown overnight (for ~12 h) at 37°C, 180 rpm in

10 ml M9 media with antibiotic selection (streptomycin 50 µg/ml)

for the target plasmid. The following day 500 µl of culture was pas-

saged into fresh M9 medium (with selection for the target plasmid),

approximately 3 h before microscope set-up and grown at 37°C,
180 rpm. After 3 h of growth, the cells were pelleted and resus-

pended in ~30 µl.
To begin the experiment, 2 µl of 0.01% Tween20 (dH2O) solution

is slowly pipetted into the selected media lane to allow the removal

of air and flow of liquid into the wells perpendicular to the media

lane. Following this, 2 µl of concentrated bacterial culture was

pipetted slowly into the same lane. Once liquid could be seen exiting

at the opposite end of the media lane the syringes containing media

(loaded on syringe pumps), the valve controller and the waste col-

lection flasks were attached to the chip by metal connectors and

polyethene tubing. Media was pumped into the chip at a flow rate

of 0.5 ml/h allowing constant supply of nutrients to the cells. The

rate of media flow was also important for the removal of cells from

the top of the well, to allow constant division and long-term track-

ing of cells located lower within the well.

Media switches

All experiments were carried out with precise 37°C temperature con-

trol and required the use of 2 different media. For the first 12 h of

the experiment (including loading of the chip), cells were grown in

Media 1; M9 supplemented with both anhydrotetracycline (40 ng/

ml) and streptomycin (25 µg/ml) to induce the YFP and select for

cells containing the target plasmid, respectively. After 12 h of

growth in the chip, the media was switched via the valve controller

(Hamilton, MPV valve positioner) to Media 2; M9 supplemented
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with anhydrotetracycline (40 ng/ml), 0.1% L-arabinose and 0.1 mM

IPTG. This media change allowed removal of the selection for the

target plasmid, continued induction of the YFP and induction of the

CRISPR-Cas system after filling of the wells.

Spacer acquisition detection from microfluidic chip output

Over the course of the experiment, the cells that flow out of the

wells and subsequently the chip were collected in a sterile Erlen-

meyer flask. The cells were then concentrated by centrifuging for

5 min at 2,000 g. The supernatant was removed, and cells were

resuspended in 2 ml of M9 media. Colony PCR was performed

with 1 μl of culture using primers BN1530 and BN1531 (Appendix

Table S2), and the products were run on a 2% agarose gel at 100 V

for 30 min alongside the 100–1,000 bp DNA Ladder (SmartLadder-

SF, Eurogentec).

Imaging and image analysis

For all time-lapse experiments, phase contrast images were

acquired at 1-min intervals at a maximum of 2 positions. In experi-

ments with a YFP target plasmid, fluorescent images were taken

every 2 min, with an exposure time of 500 ms. For experiments

with a CFP target plasmid and the mCherry-Cascade fusion, images

were acquired every 4 min with exposure times of 500 and

200 ms, respectively. Images were acquired for the entire experi-

ment including the first 12 h of growth. Cells were imaged with an

inverted microscope (Nikon, TE2000), equipped with 100× oil

immersion objective (Nikon, Plan Fluor NA 1.3), automated stage

(M€arzh€auser, SCAN IM 120 3 100), high-power LED light source

with liquid light guide (Sutter, Lambda HPX-L5), GFP, mCherry,

CFP and YFP filter set (Chroma, 41017, 49008, 49001 and 49003),

computer-controlled shutters (Sutter, Lambda 10-3 with Smart-

Shutter), cooled CMOS camera (Hamamatsu, Orca Flash4.0) and

an incubation chamber (Solent) allowing temperature control. In

order to obtain images with a pixel size of 0.041 µm, an additional

1.5× lens was used. The microscope was controlled by MetaMorph

software. A series of acquired phase contrast images were

analysed with a custom MATLAB (MathWorks) programme, origi-

nally based on Schnitzcells software (Young et al, 2012), adapted

to allow for automated segmentation of cells growing in a well

(Wehrens et al, 2018). Segmentation was inspected and corrected

manually where necessary. All segmented cells were then tracked

between frames using the pixel overlap between cells allowing the

formation of lineage structures (Wehrens et al, 2018). Growth rates

are determined by fitting an exponential function to recorded cell

lengths over multiple frames and thus represent the rate of cell

elongation, whereas interdivision time is calculated as the time

between subsequent divisions.

Plasmid loss and clearance time detection using the fluorescent
protein production rate

Before screening for plasmid loss, we detect cell death in lineages

by applying a moving average filter to the cellular growth rate. If

the cellular growth rate reached zero and did not recover again, the

remainder of the fluorescence time series after this point was

excluded from the analysis. For each lineage, we computed the

fluorescence production rate of the plasmid-encoded fluorophore

from a cell’s total fluorescence, cell area, cellular growth rate and

the rate of photobleaching of the fluorophore (Levine et al, 2012).

As there is always some amount of residual fluorescence produced

by the cells, we selected an appropriate threshold for plasmid loss

detection from the upper values of the distribution of production

rates of plasmid-free cells. To detect plasmid loss in individual line-

ages, we applied a moving average filter to the fluorescence produc-

tion rate and detected the first instance of the production rate

reaching a value below the threshold. This plasmid loss time (PLT)

can be seen as an upper bound estimate, as some processes (tran-

scription, translation and fluorophore maturation) still carry on for

some time after the last plasmid has been cleared but could not be

measured in our set-up. The onset of the clearance time (CT), which

signifies the start of the destruction of all plasmids through interfer-

ence and ends at the plasmid loss time (PLT), is difficult to detect in

individual lineages due to the naturally occurring fluctuations in the

fluorescence production rate. To determine this quantity, we align

all plasmid loss lineages at the PLT and compute the average trend.

The CT per experimental condition is approximated as the duration

from the point where the average production rate starts to decrease

until the PLT.

Sister and cousin statistics

For each lineage that lost the plasmid, we wanted to compare the

probability of loss in an unrelated cell and in a related cell. For

related cells, we counted the frequency of loss and non-loss in sister

and cousin cells of the loss cell, but only if the sister or cousin

divided (contained a complete cell cycle). For unrelated cells, we

counted the total number of loss events (i) that occurred throughout

the cell cycle of the related cell. For each loss event, we counted

how many cells (ci) still contained the plasmid up to that point. The

probability of plasmid loss happening in an unrelated cell during the

lifecycle of the related cell was subsequently calculated recursively

using the following equations:

p0 ¼ 0

pi ¼
1� pi�1

ci
þ pi�1

where pi is the probability of loss occurring within an unrelated

cell given i plasmid loss events occurred within the cell cycle of

the related cell and ci stands for the number of cells still containing

the plasmid at the same time as the i-th plasmid loss event.

Cascade copy number determination

The control strain KD614 mCherry-Cas8e containing plasmid

pTU265 (Appendix Table S1) was prepared and loaded into the

microfluidic chip as above. After 12 h, a sterile tube was connected

to the waste tubing and output from the chip was collected for

30 min. The media was then switched to induce Cascade. Approxi-

mately 5 h after induction when Cascade levels are considered to be

stabilised, the output from the chip was again collected for 30 min.

To improve counting, cells were subsequently fixed with 2.5% para-

formaldehyde solution at 22°C for 45 min (Uphoff et al, 2013).
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Slides were cleaned by sonication in subsequent steps with MilliQ,

acetone and KOH (1 M). Next, 1% agarose pads containing the M9

medium were prepared and hardened between two slides within

20 min of measuring to prevent desiccation. The fixed cells were

then spun down and resuspended in 5 µl of which 1 µl was pipetted

onto a pre-prepared agarose pad.

The cells were imaged using a TIRF microscope (Olympus IX81;

Andor Ixon X3 DU897 EM-CCD camera) using a high-power 561 nm

laser, which quickly bleached most mCherry molecules within a

couple of frames. Intensity of single molecules was measured with

Thunderstorm starting from the thirtieth frame (Ovesn�y et al, 2014).

The total cell fluorescence was measured by segmenting the cells

from the phase contrast image and sum fluorescence counts of all

cell pixels (with background subtracted). The copy number was cal-

culated by dividing the total cell fluorescence in the first frame by

the average fluorescence intensity of the single molecules. We could

then calculate the Cascade concentration ~200 Cascade molecules/

µm2 by dividing the population average of the mean summed RFP

per cell by this copy number, which was applied to the cells in our

time-lapse data.

Master Equation description of the probability of plasmid loss

In order to test whether the distribution of the target clearance

times by direct interference can be reproduced by a simple one-

step process, we consider a model using a compound probability

for binding of Cascade to the target and subsequent target removal

from the system. In bacteria, the number of targets is subject to

maintenance which delays the removal of M0 targets. For sake of

simplicity, we ignore this additional step, which has the advantage

that the number of unknown parameters is kept to an absolute

minimum. Because direct interference is a fast process, one can

assume that target maintenance does not have a strong effect on

the clearance time distribution. The Cascade number is not con-

stant, but rather Cascade production is induced at the beginning of

the experiment. This simplified model only depends on five param-

eters: the delay after induction for production of Cascade τc, the

Cascade production rate σ, the turn-over rate of Cascade λ, the

number of targets per cell M and the probability of a target removal

event pd. The number of targets in individual cells will be in gen-

eral stochastic; however, due to target maintenance one can

assume that this distribution will be quite narrow. For this reason,

we set M0 = 5 (Thompson et al, 2018).

The time-dependent Cascade copy number is modelled as a

production–degradation process with a delay τc and zero initial

amount of Cascade: the bulk mean µ(t) is given by:

μðtÞ ¼ σ

λ
θðt � τcÞ 1� e�λðt�τcÞ

� �
:

By fitting this equation to Cascade concentration data for the bulk

mean (Fig 4B), we estimate the following: τc = 34 min, σ = 3/min

and λ = 0.0061/min to obtain an average copy number of almost 500

Cascades per cell at steady state.

The removal of M0 targets from the system is a First-Passage-

Time problem. We formulate the simple Master Equation (ME) for

the conditional probability PM(t) to find M targets in a cell at a given

time t:

dPMðtÞ
dt

¼ μðtÞpdðM þ 1ÞPMþ1 � μðtÞpdMPM0

where pd is the compound probability that within the time interval

Δt a Cascade molecule binds to a target and the target is subse-

quently removed from the system.

To obtain the First-Passage-Time distribution, we need to deter-

mine the survival probability S to find at least one target, which is

simply given by S = 1 – P0. P0 is obtained by solving the above ME

with the initial condition PMðt ¼ 0Þ ¼ δMM0
:

P0ðtjM0Þ ¼ 1� e
�pd

R t

0
μðt0 Þdt0

� �M0

P0(t|M0) = 0 for t < τc and because the state M = 0 is naturally

an adsorbing boundary we readily find lim
t!∞

P0ðtjM0Þ ¼ 1. The First-

Passage-Time distribution FPr(t|M0) for target removal is given by

FPr ¼ �dS=dt ¼ dP0=dt:

FPrðtjM0Þ ¼ M0pdμðtÞ 1� e
pd

R t

0
μðt0 Þdt0

� �M0�1

Fitting this distribution to the empirical data (Fig 2D) gives rise to

pd = 4.4 × 10−4/min. The average target removal time τ is given by:

τ ¼
Z ∞

0

t0FPrðt0jM0Þdt0

Using the estimates for pd, σ, λ, τc and M0 = 5, we obtain τ ≈ 94 min.

The fit of FPr to the data can be seen in Appendix Fig S13A.

The simplified model yields a decent fit to the direct interference

data. What about the target clearance during priming? To investigate

whether this can be conceptually understood by a two-step process,

first spacer acquisition subsequently followed by primed interfer-

ence, we condition FPr on the time τp needed for spacer acquisition:

FPr tjM0; τp
� � ¼ M0pdθðt � τpÞμðtÞ 1� e

�pd

R t

τp
μðt0Þdt0

� �M0�1

The rationale behind this is that a Cascade molecule needs to

bind to a target to produce the pre-spacers necessary for spacer

acquisition before primed interference can happen. It follows

FPr tjM0; τp
� � ¼ 0 for t < τp. Note that τp ≥ τd, since in the absence

of Cascade the probability of spacer acquisition is negligibly small.

The distribution for τp is given by the First-Passage-Time distribu-

tion for the passage M0 ! M0 � 1 : FPp ¼ �dPM0
=dt:

FPp τpjM0

� � ¼ M0ppμ τp
� �

e
�M0pp

R τp

0
μ t0ð Þdt0

where pp is the compound probability that within the time interval

Δt, one Cascade binds to a target, pre-spacers are produced and a

spacer is integrated.

The distribution for the target removal times is given by:

FPτ tjM0ð Þ ¼
Z ∞

0

FPr tjM0 � 1; τp
� �

FPp τpjM0

� �
dτp

The integral cannot be done analytically. Fitting FPr(t|M0) to the

experimentally obtained data for the distribution of target loss times
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during priming (Fig 2E) yields pp = 10−6/min. The fit of FPτ to the

data can be seen in Appendix Fig S13B.

An agent-based model for stochastic biochemical kinetics of cell
populations in microfluidic wells

Although a highly simplified description of our system, the results

from the ME description show that the Cascade copy number is an

important determinant in creating the variability in the PLT distribu-

tion in the case of direct interference. For priming, the distribution

could be replicated by considering the process as the result of two

subsequent steps, of which the spacer acquisition process creates

the wide PLT distribution. However, this model of primed adapta-

tion is highly simplified and does not give any mechanistic insight

into the process of adaptation and interference in a growing cell

population. To better understand how cell-to-cell variability and

population dynamics affect CRISPR-Cas defence, we have developed

a stochastic, agent-based simulation framework to analyse the kinet-

ics of spacer acquisition and target loss. An agent-based approach

allows us to keep track of the biochemical composition of individual

cells in a growing population, as well as the inheritance of mole-

cules and other cellular features in lineages. In this type of model,

each cell is an agent, and there is no interaction between cells. For

computational efficiency and to emulate the experimental set-up,

the size of the cell population is kept constant. Results for this type

of set-up, where the population size is constant, are identical as for

a population experiencing exponential population growth, as long

as the population size is sufficiently large (100–1,000 cells) (Voliotis

et al, 2016).

Model assumptions

Since the detailed mechanism of primed spacer acquisition in type

I-E CRISPR-Cas systems is not yet completely known, we start

out with a simplified model to see whether this is sufficient to

explain our data. Because primed adaptation is much more effi-

cient than naive adaptation (preprint: Stringer et al, 2020), we

assume that the rate of naive adaptation is negligibly small over

the time course of the experiment. The spacer composition of the

CRISPR array is not modelled in detail. Rather, we assume that

we start out with a crRNA sequence that matches the target, but

is flanked by a non-consensus PAM. The effector complexes

containing this spacer can still bind to the target DNA (Semenova

et al, 2011; Musharova et al, 2019), but with a binding affinity

that is decreased up to a factor 100–150 as compared to binding

with a consensus PAM (Jung et al, 2017; Cooper et al, 2018).

Once the effector complex is bound to the target, Cas3-catalysed

destruction of the target takes place (Krivoy et al, 2018). Thus,

the level of interference is associated with the level of effector

complex binding (Cooper et al, 2018).

Cas3-mediated destruction of targets is a source of substrates for

spacer acquisition machinery, the Cas1-Cas2 complex, during

primed adaptation (K€unne et al, 2016; Semenova et al, 2016). Inter-

mediates of target DNA degradation are transient and quickly

degrade after an initial burst. Abundant levels of Cas1 and Cas2 lead

to robust spacer acquisition, by allowing Cas1-Cas2 to capture the

transient intermediates of Cas3 action (Semenova et al, 2016). Since

in our system Cas3, Cas1 and Cas2 are highly expressed, we assume

the levels of these proteins are not rate-limiting within the scope of

our model and thus do not explicitly model their abundances. Fur-

thermore, in agreement with previously published work, we assume

cells have a target maintenance system that is controlled by logistic

dynamics to keep the target concentration at its target level (Sever-

inov et al, 2016). In addition, targets and target-containing configu-

rations are actively partitioned between daughter cells (Meacock &

Cohen, 1980; Shao et al, 2015) according to a multi-hypergeometric

distribution, with each daughter receiving on average half of the

mother cell’s targets. All other proteins are partitioned according to

a Binomial distribution, where the ratio of daughter cell sizes deter-

mines the probability of each molecule ending up in one of two

daughter cells. We model the synthesis of CRISPR proteins as a

Poisson process, in which proteins are produced in geometrically

distributed bursts to capture the effect of transcriptional bursting

(Golding et al, 2005). We assume all molecular species are stable on

the timescale of the experiment (i.e. no degradation), with the

exception of the free crRNAs (not loaded in Cascade) and the DNA

fragments that are the result of interference, which have a short

lifetime.

Algorithm outline

For the agent-based model, we have adapted the First-Division Algo-

rithm by Thomas (Thomas, 2017) to include the Extrande extension

to the stochastic simulation algorithm (Voliotis et al, 2016). Further-

more, we keep the population size constant by randomly selecting a

cell to be removed from the population in the event of a cell division.

The steps to replicate our experimental set-up are described below.

Population initialisation
At time t = 0, initialise N cells by assigning to each cell an age

ti ∼ Uð�logð2Þ=μp; logð2Þ=μpÞ, a growth rate μi ∼ Lognormalðμp; σ2pÞ
and molecule count xi. Select division size Vd;i ∼ Lognormal

ðμVn
; σ2Vn

Þ and compute generation time tgen,i as log Vd;i=Vb;i

� �
=μi,

where Vb,i is the birth size. This determines the division time of the

cell which is defined as td;i ¼ ti þ tgen;i.

Biochemical reactions
Determine the next dividing cell: j ¼ argmin i td;i � ti

� �
. Determine

Δt from min td;j � tj; L
� �

, where L is Extrande’s look-ahead horizon.

Advance the molecule numbers of each cell independently from age

ti to ti + Δt using the Extrande algorithm and advance time from t to

t + Δt.

Cell division
When t = td,j, replace the dividing cell by two newborn daughter

cells of zero age. The birth size of both daughters is determined as

Vb;D1
¼ NormalðμVR

; σ2VR
ÞVd;j and Vb;D2

¼ Vd;j � Vb;D1
. Assign to one

of these a molecule number distributed according to the Binomial

distribution (proteins) and the multi-hypergeometric distribution

(targets and target configurations), depending on the mother’s mole-

cule count xj and the daughter’s size ratio to the mother cell

Vb;D2
=Vd;j, and assign the remaining molecules to the other daugh-

ter. Assign to each daughter independently a growth rate µi, division
volume Vd,i and compute corresponding division time. To ensure a

constant population size, randomly select a cell to be deleted from

the population.
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Repeat
Repeat from 2. Until t = tfinal.

Molecular mechanism and model parameters

Each cell in the population contains a pool of biochemical species

that can interact with each other through biochemical reactions, as

described in step 2. We distinguish between the targets P, the

CRISPR array A, which codes for a spacer crRNA matching a

sequence on the target, and the surveillance protein Cascade.

Together with the crRNA, the Cascade protein makes up the effector

complex E. When the effector complex encounters a target it can

bind, albeit with a low affinity in the case of a non-consensus PAM

on the target, forming a complex EP. Destruction of the target can

then take place, producing DNA fragments F. One of these frag-

ments can be integrated into the CRISPR array A as a new spacer,

transforming the array to A∗ which can now also express the newly

acquired crRNA, crRNA∗, in addition to the spacer that was already

present. The effector complex containing the new spacer, E∗ has a

higher binding affinity for the target. These biochemical reactions

are governed by the equations described in Appendix Table S4.

The size of individual cells increases exponentially with a

constant elongation rate throughout the cell cycle. Cellular length is

used as a measure for cell size, as E. coli cell width remains approxi-

mately constant throughout the cell cycle and thus the cellular vol-

ume is linearly proportional to the cell length (Taheri-Araghi et al,

2015). Growth parameters were chosen to be representative for our

experimental data. As no kinetic data are available on individual

reactions of the adaptation and interference processes, these parame-

ters were calibrated to qualitatively agree with the experimentally

determined target loss time distributions from the direct interference

and priming conditions and previously published abundances of cas

abundances (Djordjevic et al, 2012). Unless stated otherwise, the

growth parameters used were μp ¼ logð2Þ
70 , σp = 0.2, μVB

¼ 0:5,

σVB
¼ 0:07 � μVB

, μVD
¼ 3:9, σVD

¼ 0:11 � μVB
, ps = 5. The other param-

eters used in the model simulations describing the kinetic reaction

rates are given in Appendix Table S5. To simulate the direct interfer-

ence condition with the same model, we simply modify the initial

state of the system such that the spacer array consists of crRNA∗,

which is flanked by the consensus PAM sequence.

Cascade variability impacts the probability of spacer acquisition

In Fig 6C, we have shown that in priming, increased variability in

the expression of Cascade can lead to faster spacer acquisition on

average. In simulations of the agent-based model, variability of the

Cascade protein concentration is controlled through the protein pro-

duction rate k1 in coordination with the average protein burst size

bc: to modify Cascade variability while maintaining a constant con-

centration, bc is multiplied by a factor a while k1 is multiplied by its

inverse, 1/a. In Fig 5, a = 100 which leads to an increase in the

coefficient of variation of the Cascade concentration at steady state

from CV = 0.02 (low Cascade variability) to CV = 0.42 (high Cas-

cade variability).

We will now illustrate how higher Cascade variability can lead to

faster spacer acquisition by considering two scenarios and compar-

ing the cumulative probability of the time until spacer acquisition

for the simplified two-step model, which is given by.

FPSAðtjM0Þ ¼ 1� e
�M0pp

R t

0
mðt0 Þdt0

First, we consider a cell which has a constant Cascade level of

500 copies at any point in time between t = 0–1,000 min and plot

the corresponding cumulative spacer acquisition probability

(Appendix Fig S14A). Second, we consider a second cell in which

Cascade is not constant but rather appears as a shorter “burst” of

2,500 copies from t = 200 min until t = 400 min, and 0 copies at

any other time (Appendix Fig S14A). The cumulative spacer acquisi-

tion probability for the second cell reaches 1 faster than for the first

cell (Appendix Fig S14B), despite the two cells having the same

average Cascade concentration over the course of 1,000 min. This

suggests that the effects of upwards fluctuations can outweigh the

downward fluctuations.

where pd is the compound probability that within the time inter-

val Δt a Cascade molecule binds to a target and the target is subse-

quently removed from the system.

Model implementation

Stochastic simulations were performed using the adapted Extrande

algorithm (Voliotis et al, 2016) implemented in C++. Each data

point in Figs 5I and J and 6A–C was obtained from 100 simulated

experiments of up to 104 min. The population size of each simula-

tion was fixed at 100 cells. See Materials and Methods and Appendix

Tables S4-S5 for model details and parameters.

Data availability

Data analysis was performed using custom MATLAB scripts, which

can be found at https://github.com/TansLab/Tans_Schnitzcells.

Scripts for lineage analysis and plotting were implemented in

MATLAB and are available upon request. An implementation of the

agent-based model in C++ is available at https://git.wur.nl/

Biometris/articles/CRISPR_ABM.

Expanded View for this article is available online.
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Bradde S, Vucelja M, Teşileanu T, Balasubramanian V (2017) Dynamics of

adaptive immunity against phage in bacterial populations. PLOS Comput

Biol 13: e1005486

Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL,

Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small

CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960–
964

Cooper LA, Stringer AM, Wade JT (2018) Determining the specificity of

cascade binding, interference, and primed adaptation in vivo in the

Escherichia coli type I-E CRISPR-Cas system. MBio 9: e02100–e2117
Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E

(2012) Molecular memory of prior infections activates the CRISPR/Cas

adaptive bacterial immunity system. Nat Commun 3: 945

Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes

in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:

6640–6645
Davison J (2015) Pre-early functions of bacteriophage T5 and its relatives.

Bacteriophage 5: e1086500

Deveau H, Barrangou R, Garneau JE, Labont�e J, Fremaux C, Boyaval P, Romero

DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded

resistance in Streptococcus thermophilus. J Bacteriol 190: 1390–1400

D�ıez-Villase~nor C, Guzm�an NM, Almendros C, Garc�ıa-Mart�ınez J, Mojica FJM

(2013) CRISPR-spacer integration reporter plasmids reveal distinct genuine

acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli.

RNA Biol 10: 792–802
Dillard KE, Brown MW, Johnson NV, Xiao Y, Dolan A, Hernandez E,

Dahlhauser SD, Kim Y, Myler LR, Anslyn EV et al (2018) Assembly and

translocation of a CRISPR-Cas primed acquisition complex. Cell 175:

934–946.e15
Dimitriu T, Kurilovich E, Lapinska U, Severinov K, Szczelkun MD, Westra ER

(2022) Bacteriostatic antibiotics promote the evolution of CRISPR-Cas

immunity by enabling increased spacer acquisition. Cell Host Microbe 30:

31–40.e5
Djordjevic M, Djordjevic M, Severinov K (2012) Crispr transcript processing: a

mechanism for generating a large number of small interfering RNAs. Biol

Direct 7: 1–11
Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression

in a single cell. Science 297: 1183–1186
Fineran PC, Gerritzen MJH, Su�arez-Diez M, K€unne T, Boekhorst J, van Hijum

SAFT, Staals RHJ, Brouns SJJ (2014) Degenerate target sites mediate rapid

primed CRISPR adaptation. Proc Natl Acad Sci USA 111: E1629–E1638
Garneau JE, Dupuis M-�E, Villion M, Romero DA, Barrangou R, Boyaval P,

Fremaux C, Horvath P, Magad�an AH, Moineau S (2010) The CRISPR/Cas

bacterial immune system cleaves bacteriophage and plasmid DNA. Nature

468: 67–71
Golding I, Paulsson J, Zawilski S, Cox E (2005) Real-time kinetics of gene

activity in individual bacteria. Cell 123: 1025–1036
Guan J, Shi X, Burgos R, Zeng L (2017) Visualization of phage DNA

degradation by a type I CRISPR-Cas system at the single-cell level. Quant

Biol 5: 67–75
Hampton HG, Watson BNJ, Fineran PC (2020) The arms race between

bacteria and their phage foes. Nature 577: 327–336
Høyland-Kroghsbo NM, Mu~noz KA, Bassler BL (2018) Temperature, by

controlling growth rate, regulates CRISPR-Cas activity in Pseudomonas

aeruginosa. MBio 9: 18

Hynes AP, Villion M, Moineau S (2014) Adaptation in bacterial CRISPR-Cas

immunity can be driven by defective phages. Nat Commun 5: 4399

Ingmer H, Miller C, Cohen SN (2001) The RepA protein of plasmid pSC101

controls Escherichia coli cell division through the SOS response. Mol

Microbiol 42: 519–526
Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV (2013) Evolutionary dynamics of

the prokaryotic adaptive immunity system CRISPR-Cas in an explicit

ecological context. J Bacteriol 195: 3834–3844
Jackson RN, Golden SM, van Erp PBG, Carter J, Westra ER, Brouns SJJ, van der

Oost J, Terwilliger TC, Read RJ, Wiedenheft B (2014) Crystal structure of

the CRISPR RNA-guided surveillance complex from Escherichia coli. Science

345: 1473–1479
Jackson SA, Birkholz N, Malone LM, Fineran PC (2019) Imprecise spacer

acquisition generates CRISPR-Cas immune diversity through primed

adaptation. Cell Host Microbe 25: 250–260.e4
Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJJ

(2017) CRISPR-Cas: adapting to change. Science 356: eaal5056

Jung C, Hawkins JA, Jones SK, Xiao Y, Rybarski JR, Dillard KE, Hussmann J,

Saifuddin FA, Savran CA, Ellington AD et al (2017) Massively parallel

biophysical analysis of CRISPR-Cas complexes on next generation

sequencing chips. Cell 170: 35–47.e13
Kim S, Loeff L, Colombo S, Jergic S, Brouns SJJ, Joo C (2020) Selective loading

and processing of prespacers for precise CRISPR adaptation. Nature 579:

141–145

16 of 18 Molecular Systems Biology 18: e10680 | 2022 ª 2022 The Authors

Molecular Systems Biology Rebecca E McKenzie et al

https://casrai.org/credit/


Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ (2014)

Stochasticity of metabolism and growth at the single-cell level. Nature

514: 376–379
Klumpp S (2011) Growth-rate dependence reveals design principles of

plasmid copy number control. PLoS One 6: e20403

Krivoy A, Rutkauskas M, Kuznedelov K, Musharova O, Rouillon C, Severinov K,

Seidel R (2018) Primed CRISPR adaptation in Escherichia coli cells does

not depend on conformational changes in the Cascade effector complex

detected in Vitro. Nucleic Acids Res 46: 4087–4098
Kremers G-J, Goedhart J, van Munster EB, Gadella TWJ (2006) Cyan and

yellow super fluorescent proteins with improved brightness, protein

folding, and FRET Förster radius †, ‡. Biochemistry 45: 6570–6580
K€unne T, Kieper SN, Bannenberg JW, Vogel AIM, Miellet WR, Klein M, Depken

M, Suarez-Diez M, Brouns SJJ (2016) Cas3-derived target DNA degradation

fragments fuel primed CRISPR adaptation. Mol Cell 63: 852–864
Kutter E, Bryan D, Ray G, Brewster E, Blasdel B, Guttman B (2018) From host

to phage metabolism: hot tales of phage T4’s takeover of E. coli. Viruses

10: 387

Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, Briner AE,

Barrangou R, Beisel CL (2016) Identifying and visualizing functional PAM

diversity across CRISPR-Cas systems. Mol Cell 62: 137–147
Levine JH, Fontes ME, Dworkin J, Elowitz MB (2012) Pulsed feedback defers

cellular differentiation. PLoS Biol 10: e1001252

Lin-Chao S, Bremer H (1986) Effect of the bacterial growth rate on

replication control of plasmid pBR322 in Escherichia coli. Mol Gen Genet

203: 143–149
Loeff L, Brouns SJJ, Joo C (2018) Repetitive DNA reeling by the cascade-Cas3

complex in nucleotide unwinding steps. Mol Cell 70: 385–394.e3
Lopatina A, Tal N, Sorek R (2020) Abortive infection: bacterial suicide as an

antiviral immune strategy. Annu Rev Virol 7: 371–384 https://doi.org/10.

1146/annurev-virology-011620-040628 [PREPRINT]

Mamontov V, Martynov A, Morozova N, Bukatin A, Staroverov DB, Lukyanov

KA, Ispolatov Y, Semenova E, Severinov K (2021) Long-term persistence of

plasmids targeted by CRISPR interference in bacterial populations. bioRxiv

https://doi.org/10.1101/2021.04.03.438301 [PREPRINT]

Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal

gene transfer in Staphylococci by targeting DNA. Science 322: 1843–1845
Martynov A, Severinov K, Ispolatov I (2017) Optimal number of spacers in

CRISPR arrays. PLOS Comput Biol 13: e1005891

Meacock PA, Cohen SN (1980) Partitioning of bacterial plasmids during cell

division: a cis-acting locus that accomplishes stable plasmid inheritance.

Cell 20: 529–542
Mojica FJM, D�ıez-Villase~nor C, Garc�ıa-Mart�ınez J, Almendros C (2009) Short

motif sequences determine the targets of the prokaryotic CRISPR defence

system. Microbiology 155: 733–740
Moormeier DE, Bose JL, Horswill AR, Bayles KW (2014) Temporal and

stochastic control of Staphylococcus aureus biofilm development. MBio 5:

14

Moxon R, Kussell E (2017) The impact of bottlenecks on microbial survival,

adaptation, and phenotypic switching in host–pathogen interactions.

Evolution 71: 2803–2816
Musharova O, Sitnik V, Vlot M, Savitskaya E, Datsenko KA, Krivoy A, Fedorov I,

Semenova E, Brouns SJJ, Severinov K (2019) Systematic analysis of Type I-E

Escherichia coli CRISPR-Cas PAM sequences ability to promote interference

and primed adaptation. Mol Microbiol 111: 1558–1570
Nguyen J, Lara-Guti�errez J, Stocker R (2020) Environmental fluctuations and

their effects on microbial communities, populations and individuals. FEMS

Microbiol Rev 45: fuaa068

Nicholson TJ, Jackson SA, Croft BI, Staals RHJ, Fineran PC, Brown CM (2019)

Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas

systems. RNA Biol 16: 566–576
Nobrega FL, Walinga H, Dutilh BE, Brouns SJJ (2020) Prophages are

associated with extensive CRISPR-Cas auto-immunity. Nucleic Acids Res

48: 12074–12084
Nu~nez JK, Harrington LB, Kranzusch PJ, Engelman AN, Doudna JA (2015)

Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527:

535–538
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