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Fig. 5| Results from the stochastic agent-based model of CRISPR adaptation and 

interference 

a-d, Example trajectories showing fluorescence concentration produced by target plasmids 

simulated with the agent-based model for the (a) direct interference and (c) priming 

condition, and corresponding target loss distribution (b,d respectively). e-h, Example 

trajectories from 4 different parameter combinations. High Cascade affinity (f,h) corresponds 

an increase in target binding by a factor 100 as compared to low Cascade affinity (e,g), slow 

integration (g,h) represents a 100-fold reduction in the spacer integration rate as compared 

to fast integration (e,f). i, Mean target loss time of the population as a function of the average 
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target copy number per cell for direct interference (green) and priming (blue). j, Breakdown 

of average time spent on primed adaptation (blue) and primed interference (green) for cells 

that clear targets through priming, for target copy numbers in the range 1-50. k, Schematic 

of alternative target loss pathways. At low copy numbers, targets can be completely cleared 

through low-level interference, which becomes increasingly rare as copy numbers increase. 

The priming process shows a u-shaped relationship with the target copy number, as a result 

of adaptation becoming faster as target copy numbers increase, and time required for 

interference increasing with target copy number.  
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Fig. 6| Distribution of primed adaptation and primed interference time for high and low 

variability in Cascade concentration 

a, Target loss time distribution for two different levels of Cascade concentration variability 

for priming. At low variability (blue) Cascade proteins are produced in frequent, small bursts, 

whereas at high variability (green) proteins are synthesized more sporadically in large bursts 

(100-fold increase), keeping average Cascade concentration constant. b-c, The variability of 

primed interference times (b) for high Cascade variability (green) increases as compared to 

low Cascade variability (blue), whereas the variability of primed adaptation times (c) 

decreases with higher Cascade variability.  
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