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Abstract 

Single-particle tracking is an important technique in the life sciences to understand the kinetics of 

biomolecules. Observed diffusion coefficients in vivo, for example, enable researchers to 

determine whether biomolecules are moving alone, as part of a larger complex or are bound to 

large cellular components such as the membrane or chromosomal DNA. A remaining challenge 

has been to retrieve quantitative kinetic models especially for molecules that rapidly interchange 

between different diffusional states. Here, we present analytic diffusion distribution analysis 

(anaDDA), a framework that allows extracting transition rates from distributions of observed 

diffusion coefficients. We show that theoretically predicted distributions accurately match 

simulated distributions and that anaDDA outperforms existing methods to retrieve kinetics 

especially in the fast regime of 0.1-10 transitions per imaging frame. AnaDDA does account for 

the effects of confinement and tracking window boundaries. Furthermore, we added the option to 

perform global fitting of data acquired at different frame times, to allow complex models with 

multiple states to be fitted confidently. Previously, we have started to develop anaDDA to 

investigate the target search of CRISPR-Cas complexes. In this work, we have optimized the 

algorithms and reanalysed experimental data of DNA polymerase I diffusing in live E. coli. We 

found that long-lived DNA interaction by DNA polymerase are more abundant upon DNA 

damage, suggesting roles in DNA repair. We further revealed and quantified fast DNA probing 

interactions that last shorter than 10 ms. AnaDDA pushes the boundaries of the timescale of 

interactions that can be probed with single-particle tracking and is a mathematically rigorous 

framework that can be further expanded to extract detailed information about the behaviour of 

biomolecules in living cells. 
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Introduction 

Single-molecule studies have greatly expanded our knowledge of the mode of action and kinetics 

of DNA-protein interactions at the nanoscale1. Single-molecule Förster resonance energy transfer 

(smFRET) and optical/magnetic tweezers, for example, are well suited techniques to study forces, 

conformational changes and displacements of DNA-binding proteins such as DNA and RNA 

polymerases2,3, helicases4,5 and CRISPR-Cas proteins6,7 in vitro with high spatiotemporal 

resolution8–11. In vivo, however, single-particle tracking (SPT) remains the most convenient choice 

to study dynamic interactions12. For performing SPT, a gene of interest is fused to a gene 

expressing either a fluorescent protein or a protein tag (HaloTag/SnapTag) that can be later labelled 

with an organic fluorophore13,14. To avoid the temporal overlapping of emitters moving in the 

confined volume of (bacterial) cells, two strategies can be pursued. Either the expression level of 

the protein of interest is kept sufficiently low, or the emission signal from different proteins has to 

be separated in time which can be achieved using photoswitchable or photoactivatable fluorescent 

proteins or equivalent organic fluorophores enabling single-particle tracking photoactivation light 

microscopy (sptPALM)15–18. After linking subsequent localizations of these proteins into tracks, 

the apparent diffusion coefficient D* is calculated from the mean squared displacement (MSD). 

The different mobilities of proteins switching between a DNA-bound state, in which proteins 

diffuse very slowly, and a DNA-free state, in which proteins diffuse through the cytoplasm, can 

provide kinetic information on the frequency and longevity of DNA-protein interactions. 

The ability to extract this information, however, is compromised by photo bleaching, which limits 

the length of each track to a few localisations in the case of fluorescent proteins19. Furthermore, 

the limited localization precision increases the apparent diffusion of immobile states. Therefore, 

measured displacements cannot be unambiguously assigned to either a bound or a diffusing state. 
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As a consequence, histograms of D* values are often rather broad making a clear distinction 

between two diffusional states of a single species impossible. For the special case of non-

interconverting D* distributions, the shape of distributions can be calculated for a fixed number of 

analysed steps20,21 and, via fitting of the experimental data, used to extract the fractions of mobile 

and immobile proteins.  

Another factor that can increase the overlap between two states in D* distributions are state 

transitions occurring within single tracks. Using a typical frame time of 10 ms and a typical track 

length of 40 ms, any transition occurring within that track length will average out (Figure 1A). The 

framework described in references20,21 does not account for the possibility of transitions within a 

track. Consequently, the overlap can lead to overfitting, as an increase of intermediate values 

would necessitate the addition of more states, which are not necessarily biologically relevant. In 

vitro smFRET measurements have encountered a similar challenge, in which the interchanging of 

conformational states within single bursts or within single frames resulted in the averaging of 

FRET values. By implementing probability distribution analysis (PDA)22,23 previous studies were 

able to extract kinetic information and fit the entire FRET distribution24–26. 

In this study, we aim to incorporate the statistical framework of PDA into D* fitting of sptPALM 

data, which will allow us to directly extract biologically relevant parameters such as on- and off-

rate next to the free diffusion coefficient and the total DNA-bound fraction. This method, which 

we call analytical diffusion distribution analysis (anaDDA), finds the kinetic parameters by 

implementing maximum likelihood estimation (MLE) and uses the probability to find D* for all 

tracks, regardless of their length, present in the data set (Figure 1B). We benchmark this analysis 

method, with simulation of transitioning particles and implement modifications that account for 

specific experimental challenges, such as varying tracking windows and confinement effects 
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within the cell. Furthermore, we compare anaDDA to a different kinetic analysis tools that use 

Bayesian statistics or unsupervised Gibbs sampling to infer state transitions from the data27,28. We 

study the effects of confinement and tracking parameters on the fitting of the distribution 

coefficient distribution and re-analyse previously published sptPALM data of DNA interacting 

proteins, obtain their kinetic parameters, and reveal that fast DNA probing interactions were 

hidden in the published data. Using anaDDA, we demonstrate the fast and accurate analysis of 

transient DNA-protein interactions using sptPALM in the millisecond time range, a range that was 

previously only accessible in slimfield microscopy29. 

 

Methods 

D* fitting with transitioning states 

Distributions of D* have been fitted in numerous studies of DNA binding proteins30,31 using an 

formalism derived by Qian et al.20 from repeated convolution of the exponential distribution of 

displacement, resulting in a gamma function for each state. The formalism was later expanded by 

Michalet to account for localization errors32 leading to 

 

𝑓𝐷(𝑥; 𝐷, 𝑛) =
(

𝑛
𝐷 + σ2/t

)
𝑛

𝑥𝑛−1𝑒
−

𝑛𝑥
𝐷 + σ2/𝑡

(𝑛 − 1)!
, 

(1) 

where x is the measured displacement, D is the apparent diffusion coefficient, n is the number of 

steps per track, 𝑡 is the frame time and σ is the localization error. For multi-state (or multi-species) 

systems, terms can be added with different values of Di and normalised by probability coefficients 

Ai. The goal is to find the distribution of measured D* values (x), for a certain number of underlying 
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states that each have a probability Ai and a diffusion coefficient Di. These distributions assume, 

however, that there is no dynamic transitioning occurring between diffusional states of one species.  

 

In order to account for dynamics of state transitions in a two state system, we incorporated a 

statistical framework derived for probability distribution analysis (PDA) that is used to analyse 

single-molecule FRET distributions22,23,33. This method describes the distribution of time spent in 

each state given a certain 𝑘on
∗ , 𝑘off and the integrated time 𝑡int.  

 

Firstly, the probability distribution function after starting from state S1 and for a time interval 𝑡int 

can be calculated by three equations corresponding to 0, an odd or an even number of transitions23: 

 𝑊cont𝑆1(𝑡𝑆1 = 𝑡int|𝑘off, 𝑡int) =  𝑒−𝑘off𝑡int , (2) 

 𝑊odd𝑆1(𝑡𝑆1| 𝑘off, 𝑘on
∗ , 𝑡int) = 𝑘off𝑒

−𝑘off𝑡𝑆1−𝑘on
∗ 𝑡𝑆2𝐼0(2√𝑘off𝑘on

∗ 𝑡𝑆1𝑡𝑆2), (3) 

 
𝑊even𝑆1(𝑡𝑆1|𝑘off, 𝑘on

∗ , 𝑡int) =  √
𝑘off𝑘on

∗ 𝑡𝑆1

𝑡𝑆2
𝑒−𝑘off𝑡𝑆1−𝑘on

∗ 𝑡𝑆2𝐼1(2√𝑘off𝑘on
∗ 𝑡𝑆1𝑡𝑆2).  (4) 

Where 𝑡𝑆1 and 𝑡𝑆2 are times spent in state S1 and state S2 and I0 and I1 are Bessel functions of 

order zero and one, respectively. Note that 𝑡𝑆1 + 𝑡𝑆2 = 𝑡int. Equations for starting in state S2 

(WcontS2, WoddS2 and WevenS2), can be found by exchanging 𝑘off for 𝑘on
∗  and tS1 for tS2 and vice versa 

in equations 2-4. 

To correctly describe the distribution over a certain number of frames, we first calculated the 

distribution over a single time frame 𝑡𝑓. Within a single frame, a particle started in that state can 

either end in the same state or in a different state. Therefore, in a two-state system the probability 

function for four scenarios have to be calculated 
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 𝑊(𝑡𝑆𝑖|𝑘off, 𝑘on
∗ , 𝑡𝑓)S1→S1  =  𝑊even𝑆1(𝑡𝑆𝑖) + 𝑊cont𝑆1, 

(5) 

 𝑊(𝑡𝑆𝑖|𝑘off, 𝑘on
∗ , 𝑡𝑓)S1→S2  =  𝑊odd𝑆1(𝑡𝑆𝑖), 

(6) 

 𝑊(𝑡𝑆𝑖|𝑘off, 𝑘on
∗ , 𝑡𝑓)S2→S1  =  𝑊odd𝑆2(𝑡𝑆2), 

(7) 

 𝑊(𝑡𝑆𝑖|𝑘off, 𝑘on
∗ , 𝑡𝑓)S2→S2  =  𝑊even𝑆2(𝑡𝑆2)  +  𝑊cont𝑆2 (8) 

                                            for i = 1,2.  

To link the distribution of time spent in a state to the distribution of measured displacements (x), 

we can convert the time spent in each state and its diffusion coefficient to the average observed 

diffusion coefficient by the following equation (assuming here that S1 is an immobile state)  

 
𝐷 = 𝐷𝑆2

𝑡𝑆2

𝑡int
+ 𝐷𝑆1

𝑡𝑆1

𝑡int
. (9) 

In case of the transition between an immobile bound state S1 (𝐷𝑆1= 0) and a mobile state with 

diffusion coefficient 𝐷𝑆2 = 𝐷freewe can modify the above equation to   

𝐷 = 𝐷free

𝑡𝑆2

𝑡int
. (10) 

For all further work we assume that the first state is immobile and use equation 10.  

Using equation 10, the probability distribution function (equation 1) can be modified according to 

 

𝑓𝐷(𝑥; 𝑡𝑆2, 𝐷free, 𝑛) =

(
𝑛

𝐷free
𝑡𝑆2
𝑡int

+ σ2/𝑡int

)

𝑛

𝑥𝑛−1𝑒

−
𝑛𝑥

𝐷free
𝑡𝑆2
𝑡int

 + σ2/𝑡int

(𝑛 − 1)!
. 

(11) 

Subsequently, the probability to find a certain diffusion coefficient (x) for a single time step given 

the time spent in the mobile state is given by 𝑓𝐷(𝑥|𝑡𝑆2, 1). We can then find the distribution of 
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measured diffusion coefficients for a single frame by integrating over all possible times spent in 

the mobile state 

 
𝑊(𝑥|𝑘off, 𝑘on

∗ , 𝐷free, 𝑡𝑓)Si→Sj
= ∫ 𝑓𝐷(𝑥|𝑡𝑆2, 1) 𝑊(𝑡𝑆2|𝑘off, 𝑘on

∗ , 𝑡𝑓)𝑑𝑡𝑆2

𝑡𝑓

0 Si→Sj

 

                 i = j = 1,2. 

(12) 

Now that we have the distribution for a single time step, we need to find the distribution for the 

average of multiple frames. For this we use the same method as Qian et al.20, namely repeated 

convolution of the distribution for a single frame, while keeping track of the start and end state. 

The probability distributions are therefore 

 
𝑊(𝑥|2𝑡𝑓)𝑆1→𝑆1  =  ∑ (𝑊(𝑥|𝑡𝑓)𝑆1→𝑆i ∗ 𝑊(𝑥|𝑡𝑓)𝑆i→𝑆1

),

 

𝑖=1,2  

 (13) 

 
𝑊(𝑥|2𝑡𝑓)𝑆1→𝑆2  =  ∑ (𝑊(𝑥|𝑡𝑓)𝑆1→𝑆i ∗ 𝑊(𝑥|𝑡𝑓)𝑆i→𝑆2

),

 

𝑖=1,2  

  (14) 

 
𝑊(𝑥|2𝑡𝑓)𝑆2→𝑆1  =  ∑ (𝑊(𝑥|𝑡𝑓)𝑆2→𝑆i ∗ 𝑊(𝑥|𝑡𝑓)𝑆i→𝑆1

),

 

𝑖=1,2  

 (15) 

 
𝑊(𝑥|2𝑡𝑓)𝑆2→𝑆2  =  ∑ (𝑊(𝑥|𝑡𝑓)𝑆2→𝑆i ∗ 𝑊(𝑥|𝑡𝑓)𝑆i→𝑆2)

 

𝑖=1,2

.   (16) 

For a track consisting of 4 frames, the distributions found for 2 frames can be convoluted again. 

The full distribution is then found by summing up each of the partial distributions multiplied by 

the chance they start in S1 or S2: 

 𝑊tot  =  𝑝𝑆1(𝑊(𝑥|4𝑡𝑓)𝑆1→𝑆2 + 𝑊(𝑥|4𝑡𝑓)𝑆1→𝑆1
) 

            + 𝑝𝑆2(𝑊(𝑥|4𝑡𝑓)𝑆2→𝑆1 + 𝑊(𝑥|4𝑡𝑓)𝑆2→𝑆2
), 

(17) 
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with pS1 and pS2 defined in equations 18 and 19, respectively: 

 
𝑝𝑆1 =

𝑘on
∗

𝑘on
∗ + 𝑘off

, (18) 

 
𝑝𝑆2 =

𝑘off

𝑘on
∗ + 𝑘off

. (19) 

 

Localization error 

As two consecutive steps share at least one localisation, the localisation error of this localisation 

leads to a correlation between the step lengths32. Only in the special case of the localisation error 

being zero, the step lengths are uncorrelated. The distribution of the sum of step lengths for a 

certain number of steps is therefore not described by a gamma distribution, which is the sum of 

independent variables. However, as each step separately is a gamma random variable, we require 

the summation of correlated gamma random variables to describe the distribution of localization 

error analytically for different amount of time steps. 

 

The extend by which the localization error affects the correlation of sequential steps can be 

quantified by calculating the correlation coefficient 𝜌𝑖𝑗 = 〈𝑥, 𝑦〉/𝜎𝑥𝜎𝑦 and the covariance of 

sequential steps as derived by Berglund34  

〈∆𝑥𝑖, ∆𝑥𝑗〉 = 2𝐷𝑅∆𝑡 − 𝜎2 (20) 

for |𝑖 − 𝑗| = 1, 

where R is the motion blur coefficient caused by movement of the particle during the illumination 

time and D is the diffusion coefficient. We assume further that measurements were taken with very 

short illumination pulses leading to R→ 0. We further convert equation 20 to MSD notation 
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〈∆𝑥𝑖
2, ∆𝑥𝑗

2〉 = 〈∆𝑥𝑖∆𝑥𝑗〉
2 = 𝜎4. (21) 

After converting to two dimensions and assuming that ∆𝑥 and ∆𝑦 are independent, we get 

〈∆𝑥𝑖
2+∆𝑦𝑖

2, ∆𝑥𝑗
2+∆𝑦𝑗

2〉 = 4〈∆𝑥𝑖∆𝑥𝑗〉
2 = 4𝜎4. (22) 

To calculate the correlation coefficient 𝜌𝑖𝑗, we use the following expression for the standard 

deviation of the MSD in two dimensions32 

𝜎MSD = 4𝐷𝛥𝑡 + 4𝜎2, (23) 

leading to 

𝜌𝑖𝑗 =
〈∆𝑥𝑖

2+∆𝑦𝑖
2, ∆𝑥𝑗

2+∆𝑦𝑗
2〉

𝜎MSD,𝑖 𝜎MSD,𝑗
=

4𝜎4

(4𝐷𝛥𝑡 + 4𝜎2)2
. (24) 

 

For most applications 𝐷𝛥𝑡 > 𝜎2 and 𝜌 can be neglected. However, for immobile particles 𝐷𝛥𝑡 =

0, and 𝜌 = 
4𝜎4

(4𝜎2)2
= 1/4. For a number of n measured steps with localization error of an immobile 

particle, the correlation matrix 𝜌 is therefore given by  

𝜌 =  

[
 
 
 
 

1 1/4 0 0 …
1/4 1 1/4 0 …
0 1/4 1 1/4 …
0 0 1/4 1 …
… … … … …]

 
 
 
 

.  (25) 

 

The summation of gamma random variables given a certain correlation matrix has been previously 

derived in terms of confluent Lauricella series35. Using the definitions above, this equation can be 

written as 

𝑓𝐷(𝑥|0, 𝑛) = 𝛷2(1, . . , . . ,1; 𝑛; −
𝑦

𝜆1
, . . , . . , −

𝑦

𝜆𝑛
) 𝑥−1+𝑛/det (𝐴)𝛤(𝑛), (26) 
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where 𝛷2 is the confluent Lauricella function, 𝜆1-𝜆𝑛 are the eigenvalues of the matrix 𝐴 = 𝐵 ⋅ 𝐵, 

where B is an n x n matrix with diagonal values 𝜎2, and C is an n x n matrix with values 𝐶𝑖𝑗 =

√𝜌𝑖𝑗. 

This summation, for each number of measured steps n is the modified distribution for immobile 

particles taking into account the correlation between sequential measured displacements. To 

implement this distribution in the calculation of our total D distributions, we subtract the fraction 

of immobile particles after n time steps (𝑊𝑐𝑜𝑛𝑡𝑆1(𝑡𝑆1 = 4𝑡𝑓), Eq.5 ) multiplied with the distribution 

of expected D* for n time steps 𝑓𝐷(𝑥|0, 𝑛) (Eq. 1) and replace it with the same fraction of 

immobilized particles multiplied with the distribution calculated based on the Lauricella series. 

The calculation of confluent Lauricella series was implemented from MATLAB code described in 

Martos-Naya et al. (2016)36.  

 

The equation above can be further refined to experimental data, if there is a large difference in 

localization error between particles. In that case, there is another correlation factor due to the 

difference in brightness/focus of particles. As some particles might show a dynamic brightness, 

e.g. by diffusing in and out the excitation/detection focus, localizations of this track will have a 

higher precision the brighter the emission of the particle is, altering the correlation matrix to  

𝜌𝑖𝑗 = 1  for 𝑖 = 𝑗, 

𝜌𝑖𝑗 =
1

4
+

3

4
𝑟  for |𝑖 − 𝑗| = 1, 

𝜌𝑖𝑗 = 𝑟  for |𝑖 − 𝑗| > 1, 

where r is the correlation coefficient between two steps within the same track not sharing any 

localizations (|𝑖 − 𝑗| > 1). We found that this correlation coefficient can be experimentally 

determined by measuring correlation of displacement of immobilized particles, or by measuring 
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the correlation of estimated localization errors within tracks. This can be done by making a matrix 

in MATLAB where the rows are the different tracks and the columns are either the different step 

size of immobilized particles or the estimated localization errors. The built-in function coerrcoef 

then automatically calculates the correlation coefficient of this dataset.  

 

Tracking window 

In order to the prevent the accidental linking of different diffusing particles, many tracking 

algorithms use a certain cut-off, in which steps longer than a certain distance are not allowed37–39. 

However, this tracking window can influence the distribution of D values recovered. In analytical 

DDA, we correct for this by setting 𝑓𝐷(𝑥 > 𝑚𝑎𝑥𝐷|𝐷𝑖, 1) = 0, where maxD is the maximum D* 

value that can be obtained given the tracking window.  
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Confinement 

To take the effects of geometrical confinement within the cell into account, we implemented an 

analytical way to calculate the effective diffusion coefficient given the geometry and the real 

diffusion coefficient. Most boundary geometries encountered in in vivo settings are either spherical 

or rod-shaped. For a spherical geometry, the effective measured MSD given a diffusion coefficient 

D and a timestep ∆𝑡 have been previously derived40. First, the authors defined the zeros 𝛼𝑚 at 

which 𝑗1
′(𝛼𝑚) =  0, with 𝑗1

′  being the derivative of the spherical Bessel function of the first kind. 

This can be rewritten as 

(𝛼𝑚
2 − 2)sin (𝛼𝑚) + 2𝛼𝑚cos (𝛼𝑚) =  0. (27) 

Subsequently the effective measured MSD within a spherical confined space of radius r is equal 

to 

𝑀𝑆𝐷 = 𝑟2 ( 
6

5
− 12 ∑ 𝑒

−
𝛼𝑚

2𝑡𝐷
𝑟2

1

𝛼𝑚
2(𝛼𝑚

2 − 2)

∞

𝑚=1

). (28) 

This infinite series converges to zero. We therefore used the first 10.000 terms for calculation as a 

reasonable approximation. Because the previous equation refers to the three-dimensional MSD we 

use the following relation to calculate the observed diffusion coefficient we divide by 6t, 

𝐷obs =
𝑀𝑆𝐷

6𝑡
=

𝑟2

6𝑡
( 

6

5
− 12 ∑ 𝑒

−
𝛼𝑚

2𝑡𝐷
𝑟2

1

𝛼𝑚
2(𝛼𝑚

2 − 2)

∞

𝑚=1

). (29) 

We can define the above equation as a function to calculate the observed diffusion given a certain 

radius, frame time and diffusion coefficient in the presence of spherical confinement 

𝐷obs = 𝑓spherical(𝑟, 𝑡, 𝐷). (30) 

We then substitute 𝑓𝐷(𝑥|𝐷, 1) for 𝑓𝐷(𝑥|𝐷obs, 1) and use equation 12 to calculate the distribution 

under any number of steps and given a 𝑘off and 𝑘on
∗ .  
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For rod geometries, there is no analytically derived solution available. However, we can combine 

the spherical derivation with a derivation in the same study for circular 2D geometries. In this 

geometry, the authors defined zeros 𝛽𝑚 of the function 𝐽1
′(𝛽𝑚) =  0, where 𝐽1

′  is the derivative of 

the Bessel function of the first kind. Subsequently, the effective measured MSD within a circular 

confined space of radius r is equal to 

𝑀𝑆𝐷 = 𝑟2 (1 − 8 ∑ 𝑒
−

𝛼𝑚
2𝑡𝐷

𝑟2
1

𝛼𝑚
2(𝛼𝑚

2 − 1)

∞

𝑚=1

), (31) 

which we can again convert to a function to calculate the observed diffusion coefficient, but now 

as the MSD is two-dimensional, we divide by 4t 

𝐷obs =
𝑀𝑆𝐷

4𝑡
=

𝑟2

4𝑡
(1 − 8 ∑ 𝑒

−
𝛼𝑚

2𝑡𝐷
𝑟2

1

𝛼𝑚
2(𝛼𝑚

2 − 1)

∞

𝑚=1

 ) = 𝑓circular(𝑟, 𝑡, 𝐷). (32) 

To calculate the effective measured MSD in a rod-shaped geometry, we split the cell in two parts: 

the hemispherical (consisting of two hemi-spheres) and the cylindrical part. If the cell is much 

longer than it is wide the cylindrical part dominates. For diffusion within a cylinder, movement 

along the cell length is not restricted, whereas movement along the width of the cell is constrained 

as given by equation 31. If the cell is as long as wide, we have a spherical cell for which the 

diffusion is described by equation 28. For cells featuring intermediate aspect ratios, we can 

calculate the ratio of these two domains via the ratio of their volumes 

𝑉total = 𝑉cylindrical + 𝑉hemi−sphere = 𝜋𝑙𝑟2 +
4

3
𝜋𝑟3, (33) 

where r is the radius of the cell width and l the length of the cylindrical part of the rod-shaped cell. 

The observed diffusion coefficient along the cell length, 𝐷obs,x is not being restricted in the 

cylindrical part. The observed diffusion coefficient along the cell width 𝐷obs,y on the contrary is 
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restricted within the cylindrical part. Therefore, we separately calculate these two observed 

diffusion coefficients  

𝐷obs,𝑥(𝑟, 𝑡, 𝐷) =
𝑉spherical

𝑉total
𝑓spherical(𝑟, 𝑡, 𝐷) +

𝑉cylindrical

𝑉total
𝐷, (34) 

𝐷obs,𝑦(𝑟, 𝑡, 𝐷) =
𝑉spherical

𝑉total
𝑓spherical(𝑟, 𝑡, 𝐷) +

𝑉cylindrical

𝑉total
𝑓circular(𝑟, 𝑡, 𝐷). (35) 

 

For the last step, we require a probability distribution function of the sum of the two distributions 

𝐷obs,𝑥 and 𝐷obs,𝑦 and go back to the distribution of x 

𝑥 ~ 𝑁(0,√2𝐷obs,𝑥𝑡), 
(36) 

representing a normal distribution with mean of zero and σ = √2𝐷obs,𝑥𝑡. The distribution of the 

squared displacement is therefore a chi-square distribution  

𝑋2

2𝐷obs,𝑥𝑡
⁄ = 𝑋2

𝜎2⁄ ~ 𝜒1
2. (37) 

The same holds for y with 

𝑌2

2𝐷obs,𝑦𝑡⁄ ~ 𝜒1
2. (38) 

To get to the distribution of 𝐷ob𝑠 we calculate 

𝐷obs =
𝐷obs,𝑥

2
⁄ (𝑋

2

2𝐷obs, 𝑥𝑡⁄ ) +
𝐷obs,𝑦

2
⁄ (𝑌

2

2𝐷obs, 𝑦𝑡⁄ ) =
𝑋2 + 𝑌2

4𝑡
. 

(39) 

Consequently, the distribution of 𝐷obs is a summation of two chi-square variables weighted by the 

different diffusion coefficients. The formula for this summation was given in a previous study41 

for the following case: Let 𝑋, 𝑌~𝜒𝑘
2 two independent and identically distributed chi-square random 

variables with k degrees of freedom. Let 𝑍 ≔ 𝑎𝑋 + 𝑏𝑌, then the density function 𝑓𝑧 is given by: 
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𝑓𝑧 = 𝜃(𝑧)
1

(4𝑎𝑏)
𝑘
2

(
𝑎 − 𝑏

8𝑎𝑏
)

1
2
−

𝑘
2 Γ (

1
2 +

𝑘
2)

Γ(𝑘)
𝑒−

𝑎+𝑏
4𝑎𝑏

𝑧𝑥
𝑘
2
−

1
2𝐼𝑘

2
−

1
2

(
𝑏 − 𝑎

4𝑎𝑏
𝑧) 

(40) 

In our case, where k = 1, this equation is simplified to 

𝑓𝑧 =
1

(4𝑎𝑏)
1
2

exp (−
𝑎 + 𝑏

4𝑎𝑏
𝑧) 𝐼0 (

𝑏 − 𝑎

4𝑎𝑏
𝑧), (41) 

where 𝐼0 is the zeroth order modified Bessel function of the first kind. When we substitute 
𝐷obs,𝑥

2
⁄  

and 
𝐷obs,𝑦

2
⁄  for a and b respectively (combine equation 39 and 41), we obtain the following 

equation for the summation of two diffusion coefficients in two dimensions 

𝑓𝐷 =
1

(𝐷obs,𝑥𝐷obs,𝑦)
1
2

exp (−
1

2
(𝐷obs,𝑦 − 𝐷obs,𝑥)𝑥) 𝐼0 (

1

2
(𝐷obs,𝑦 − 𝐷obs,𝑥)𝑥) (42) 

where x is the measured displacement as in equation 1. This distribution can then be used as 

substitution for 𝑓𝐷(𝑥|𝐷, 1) and we can use equation 12 to solve the distribution under any number 

of steps and given a 𝑘off and 𝑘on
∗ . 

 

Maximum likelihood estimation (MLE) 

To find the underlying parameters of experimental data and simulations, we use MLE which 

maximizes the joint probability of observing by iteration through the parameter space. Generally, 

MLE requires a probability density function to calculate and sum all probabilities of each observed 

data point. The benefit of the method is that it does not require any binning, compared to other 

optimization methods. However, MLE does require the exact probability for each data point to be 

calculable. Because we use numerical convolution (for increasing the performance of the 

algorithm, we implemented an FFT convolution42), we will only get the probability at discrete 
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points within the probability density function. Therefore, to calculate the probabilities for the 

points of our data set, we use spline interpolation. 

Because MLE is known to be affected by local minima43, we use a number of cycles (generally 

four) in which we generate random starting parameters and run the algorithm several times after 

which we select the end parameter set with the maximal likelihood. Those parameters are then 

used as starting parameters for bootstrapping in which we run the analysis through a number of 

subsets of the data to get an estimate of the standard deviations of our parameter estimates.  

 

Plotting of diffusion distribution histograms 

With the parameter sets used in our simulations, the diffusion histograms are visually more 

distinguishable when log(D*) is plotted compared to D*. We therefore integrated the linear density 

function with widths specified by the bin size of the logarithmic scale to calculate the probability 

density function for log(D*) instead of D*.  

 

Results 

AnaDDA generates D* distributions equal to the ground truth of simulated distributions 

AnaDDA allows calculating the shape of the D* distribution, depending on the free diffusion 

coefficient (the diffusion coefficient in absence of binding interactions) and the transition rates. 

As this shape depends on the step length of the tracks, we separate the tracks according to their 

respective length and fit each data point to the distribution that matches their step length. To 

benchmark our new analysis method, we first compared our theoretical predictions of the D* 
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distribution to data in which we simulated the diffusional characteristics of a particle that 

dynamically switches between a (DNA-) bound state and a freely diffusing state without including 

any boundary conditions for diffusion (see section below for confinement within cells). With 

increasing number of tracks, the predicted D* distribution increasingly resembles the predicted 

theoretical distribution (Figure 1C). To test whether our theoretical distributions differed from the 

simulated ground truth, we performed Kolmogorov-Smirnov tests. We found that the test statistic 

DKS converged to zero for larger number of tracks analysed and was on average smaller than the 

critical value required to reject the null-hypothesis (DKS = 0.004 for p < 0.05), indicating that the 

ground-truth simulations and our theoretical predictions come from the same distribution (Figure 

1D). 

We varied the range of transition timescales (Figure 1E) ranging from 0.01 to 10 transitions per 

frame (at 0.01 s frame time) at all different step lengths included in this analysis (1-8; Figure S1) 

and compared a range of frame times (20-100 Hz) and experimentally realistic localization errors 

(20-50 nm) (Figure S2). Under all these conditions, the ground truth simulations (N = 100.000 

tracks) and the anaDDA generated distributions showed very close agreement (DKS < 0.004). As 

this analysis involved a direct comparison between the predicted and simulated distribution 

without fitting the data or any optimization of parameters, it can be concluded that our theoretically 

predicted distributions are similar to the ground truth distributions.  

AnaDDA can extract transition rates from tracks with more than one transition per frame 

With data from experimental measurements, the ground truth is unknown, and parameters have to 

be inferred by fitting. First, we tested via simulations how reliably parameters can be extracted 

over a large dynamic range of transitions. We compared the input parameters to the extracted ones 
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with Maximum Likelihood Estimation (MLE). To benchmark the performance of extraction we 

calculate the accuracy through the geometric mean and the precision through the geometric 

standard deviation of 10 independent simulations. For all tested data sizes (5000-100000 tracks) 

and transition rates (0.001-10 transitions per frame), the analysis method is accurate (< ± 5% of 

input parameters). The precision decreased slightly with decreasing data size and for small/large 

transition rates (Figure 2). Furthermore, the precision at high transition rates (>1 transition per 

frame) is lower for 𝑘on
∗  than 𝑘off (Figure 2A-B). In general, the highest precision is found for tracks 

between 0.1 and 1 transition per frame. With 50.000 tracks per simulation, the transition rates over 

three orders of magnitude (0.002-2 transitions per frame) were determined with an error smaller 

than 20% of the actual value (Figure 2A-C).  

We compared our method with a previously published framework that used Bayesian statistics to 

infer transition and diffusion dynamics (vbSPT)27 and a framework that used unsupervised Gibbs 

sampling for similar purposes (SMAUG)28. As vbSPT and SMAUG deduce the number of states 

from the data, we limited the amount of states in this analysis software to two to achieve a fair 

comparison. For slow transitions (<0.01 transition per frame) both anaDDA and vbSPT were able 

to extract the correct kinetic parameters (<20% error; Figure 2D-F), whereas SMAUG 

overestimated the transition rates. At faster transitions (> 0.02 transitions per frame), however, we 

observed a decrease in the extracted apparent free diffusion coefficient and a decrease in the 

extracted on and off-rates for both vbSPT and SMAUG.  

When we removed the restriction of a two-state model, vbSPT started introducing multiple false 

states (Figure S3). Already at low transition rates (0.01 transitions per frame), vbSPT suggests the 

presence of a false third state. At this transition rate, two states (0.06 and 0.11 µm2/s) were close 

to the expected average apparent diffusion coefficient of the simulated immobile state (σ2/t = 0.09 
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µm2/s). The highest number of predicted states (4 states) was found for transition rates between 

0.05 and 0.5 transitions per frame.  

Our findings suggest that vbSPT and SMAUG fail to account for the increasing occurrence of 

multiple transitions within a single frame at fast transition rates. Our analysis software is distinctive 

in its ability to extract kinetic parameters when multiple transitions are likely to occur within the 

time window of the measurement. We wanted to further correct for artefacts that can influence 

diffusion distribution analysis, namely confined diffusion within cells and application of tracking 

windows.  

AnaDDA corrects for confinement within cells and restricted tracking windows 

To study the effect of geometrical confinement, we simulated diffusive particles within the 

confined boundaries of different cell shapes. We previously showed that confinement only has a 

very small effect on observed transition rates in bacterial cells44. However, as the measured 

diffusion coefficient can be greatly affected by confinement, we implemented an algorithm based 

on previously developed derivations40 (for details see Materials and Methods) to account for 

confinement in both rod-shaped (e.g. E. coli cells) and spherical-shaped boundaries (e.g. 

eukaryotic nuclei) (Figure 3A).  

For both spherical and rod-shaped cells (cell length : radius = 8:1) we found that our theoretical 

predictions for varying cell sizes (𝑟2 = (2, 5, or 20)𝐷free𝑡) match well with simulated data (Figure 

3B-C; DKS < 0.006) in contrast to uncorrected distributions for which the predicted distributions 

are statistically different from the simulated distributions (DKS > 0.04). In an E. coli cell (𝑟 =

0.5 μm) and under standard measurement frame times (0.01 s), these confinement regimes 

(𝐷free𝑡) would be reached with 𝐷free values of 12.5 μm2/s respectively, which matches the values 
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found for small single fluorescent proteins 45. In a eukaryotic nucleus (𝑟 = 3 μm), these regimes 

would correspond to 𝐷free values up to 450 μm2/s which is generally much faster than any 

reported literature values. This finding indicates that geometrical confinement by cell boundaries 

is mostly limiting in prokaryotic studies. However, at longer frame times (0.1 s) confinement 

effects will play a role when studying diffusion within eukaryotic nuclei.  

As not every cell in a population is the same size, the distribution might be further affected by a 

variation of cell sizes. We therefore analysed a mixture of three different simulated cell sizes and 

found that the distributions remained statistically indistinguishable from a uniform population of 

the same cell size (Fig. S4; DKS < 0.006). This shows that the correction method remains valid as 

long as the average dimensions of the cell boundaries are known.  

To further test our ability to infer parameters from the data in a system where diffusion is 

geometrically confined, we performed MLE with and without corrections for confinement. We 

observe that the incorporation of our confinement corrections increases the accuracy and precision 

of the estimation of 𝐷free (Fig. 3D-E). Compared to unconfined diffusion, there is a bias in 

recovered transition rates at very small and large transition rates, as these regimes are most 

sensitive to small deviations of the predicted distribution to the ground truth. These minor 

deviations are most likely caused by a correlation which occurs for diffusing particles within 

boundaries, where particles that are close to the boundary in one frame, are again likely to 

encounter the boundary in the next frame. That effect is not taken into account in our current 

implementation. However, for most transition regimes (0.01-2 transitions per frame), the error of 

the estimated parameters falls within 20%.  
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Another type of analysis artefact comes from the settings for tracking windows. When the density 

of labelled fluorophores is higher than 1 per cell, different molecules can be falsely assigned to the 

same track. To prevent this effect, multiple tracking software algorithms set a limit to the 

maximum step length that individual tracks are allowed to have. Although this is sometimes 

unavoidable, the absence of the largest steps can severely affect the MLE fitting parameters. 

AnaDDA is able to correct for this, by integrating this max step in the probability distribution (see 

Materials and Methods). The effect of this correction was tested for a range of radii of tracking 

windows (𝑟2 = (5, 10, or 20)𝐷free𝑡) and in all cases the DKS of the corrected distributions were 

below the threshold for significantly different distributions (DKS = 0.006), whereas for small and 

intermediate tracking windows (𝑟2 = (5 and 10)𝐷free𝑡) uncorrected distributions were 

significantly different (DKS = 0.34 and DKS = 0.11; Figure 3F-G). The tracking window also had a 

large effect on both the predicted transition rates and free diffusion coefficients from MLE, where 

in the absence of corrections all parameters were significantly underestimated (>1.5x). With the 

correction, the estimations were again unbiased and very similar to the accuracy and precision of 

estimations in the absence of tracking windows. 

Taken together, anaDDA can correct the distributions for measurements that are affected by 

confinement within spherical and rod-shaped boundaries and by the application of a maximum 

step size within tracking algorithms. 

AnaDDA can be expanded for multiple states and can integrate multiple frame times 

So far, we have discussed the presence of one diffusing species converting between two diffusional 

states. In the following, we will expand the DDA-fitting to account for more species and states. 
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Many DNA binding proteins contain both non- and target-specific interactions with DNA. 

Therefore, it is likely that the kinetics of these two interactions are different, which would require 

the model to be expanded beyond a two-state model. PDA statistical analysis currently does not 

incorporate more than two dynamic states. However, it is possible to incorporate more states by 

assuming that their dynamics are much slower than the non-specific DNA interactions, which 

would result in a negligible amount of transitions in the timeframe studied. Then these states can 

be approximated by separate static (non-interchanging) species (Figure 4A). Generally the specific 

interactions are much longer lasting than the non-specific interactions46, so in many cases this 

assumption would be valid.  

To test how well this approximation works and how well the method can distinguish this model 

from a simple two-state model, we simulated a linear (A ⇄ B ⇆ C) three-state model containing 

one slow transitioning bound state (𝑘on,1
∗  = 0.005 frame-1, 𝑘off,1 = 0.01 frame-1) and one fast 

transitioning bound state (𝑘on,2
∗  = 0.2 frame-1, 𝑘off,2 = 0.2 frame-1). We compared this simulation 

to our theoretically predicted distribution where we approximated the slower transitioning state as 

a separate immobile species and the faster transitioning state as a separate species (Figure 4B). 

The fraction of the approximated immobile species (20 %) and transitioning species (80 %) can be 

calculated from the ratio of the on- and off-rates (Figure 4B). We found very good agreement 

between the theoretical prediction and the simulation (DKS < 0.006) indicating that this 

approximation can be applied in this case. We then tried to find whether a single species two-state 

model could also fit the distribution of the three-state model (Figure 4C). We found that although 

for smaller track lengths there are parameters that can fit the distribution quite well (DKS = 0.0078 

for track length of 4 steps), the distribution for larger tracks significantly deviated from the ground 
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truth (DKS = 0.0149 for track length of 8 steps). Therefore, with a sufficient number of longer tracks 

two-state and three-state models are clearly distinguishable.  

We then tested under which conditions the parameters can be reliably extracted from the data. To 

this end, we varied the transition rates of the fast-bound state (𝑘on,2
∗  and 𝑘off,2) while keeping the 

slower bound state fixed. We observed that under all transition rates tested (0.1-10 transitions per 

frame), the error of the estimated parameters falls within 25% and that with increasing rates of the 

fast-bound state, the extraction of the fraction parameter became more reliable (Figure 4D). This 

finding indicates that as long as the transition rates associated with the different bound states are 

different enough (>10 fold), with one of them being significantly slower than the frame time used 

in the measurements, parameters for three state models can be reliably extracted with anaDDA.  

More complex models with larger number of species, each having up to three states and meeting 

the requirements described above can also be fitted using anaDDA but are prone to increased 

uncertainty and under-/overfitting as many parameters in these models could give rise to similar 

distributions. To overcome this limitation, we implemented the ability to use data acquired at 

different frame times into a single global fit. By fitting data from multiple frame times 

simultaneously, the number of potential parameters that can fit all the data decreases, leading to 

more accurate and precise fitting.  

As an example, we simulated a two-species (one immobile, one transitioning) model and 

calculated the Kolmogorov-Smirnov test statistic (DKS) for a range of parameters around the input 

parameters for a simulated dataset consisting of tracks either measured at a single frame time (10 

or 50 ms) or a combined set where halve of the dataset contained simulated tracks from each frame 

time (Figure 4E). If there are other closely related parameters with similar DKS values to the ground 
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truth, the fit can converge to these values as well. Therefore, the uncertainty is linked to the 

parameter space with DKS similar to the DKS of the ground truth. We observed that different frame 

times perform better on different parameters. In particular, short frame times led to more 

uncertainty in the determination of the fraction of each species, whereas long frame times gave 

more uncertainty in the determination of the free diffusion coefficient. When data recorded at 

different frame times is combined, there is only a single set of parameters that give rise to a similar 

DKS as the ground truth. In conclusion, the benefit of gathering data with different frame times is 

that it reduces the parameter space that can simultaneously fit multiple distributions and therefore 

offers better performance with the same number of data points.  

E. coli DNA polymerase I undergoes rapid DNA interactions 

To test the applicability of our analysis method to experimental data, we re-analysed previously 

published data on the diffusion of DNA polymerase I in E. coli17. In this study, the diffusion 

distribution of PAmCherry-Pol1 was grouped into immobile and mobile diffusing particles by 

simple thresholding without determination of any transition kinetics. The authors found that under 

normal conditions only 4-5% of the proteins were immobile. However, they found that even the 

mobile tracks were mostly located within the nucleoid, which may suggest that these tracks 

represent transient DNA binding, probably probing the DNA for repair sites. We therefore 

hypothesized that the previously assigned mobile fraction is also undergoing rapid transitions 

between DNA bound and freely diffusing states.  

We decided to fit the data with two species, one belonging to proteins involved in repair (a species 

with a single bound state) and one to probing (a species with a bound and a freely diffusing state). 

When we fitted this model (two species and three states; Figure 5A) we found a similar percentage 
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of proteins involved in repair as described in the previous study (4%; Figure 5B). Furthermore, we 

found that the probing species had a free diffusion speed of 2.8 (± 0.2) μm2/s in the cytoplasm and 

that it is involved in vary rapid DNA probing events (𝑘off 137 ± 7 s-1; 𝑘on
∗  155 ± 25 s-1). Based on 

the on and off-rates we calculated that the probing species spends more than half the time (~ 55%) 

bound to DNA. Altogether, DNA polymerase spends approximately ~ 60% bound to DNA either 

in repair (4%) or probing for mismatch sites (55%). 

The study also measured the diffusivity of DNA polymerase in presence of the DNA damaging 

agent MMS. Using anaDDA, we found that the immobile species increased to 13% which matches 

the findings in the publication (13 ± 0.2%; Figure 5C). The transition rates and diffusion 

coefficients under this condition could not be assigned with confidence based on the bootstrap 

values (𝑘off 137 ± 7 s-1; 𝑘on
∗  348 ± 25 s-1). values. We hypothesized that this is caused by the lower 

number of available tracks (41.415 tracks) compared to the untreated dataset (142.178 tracks). 

To quantitatively assess the transition kinetics in presence of DNA damage, we made the 

assumption that DNA damage would not alter the free diffusion behaviour of DNA polymerase in 

the cytoplasm but only the kinetics of the interactions with DNA. We therefore fixed 𝐷free to the 

value found for DNA polymerase in untreated cells (2.8 μm2/s; Figure 5D) which caused the fitting 

to converge to a narrow range of transition rates. We observed that although the 𝑘off remained the 

same (126 ± 3 s-1), the on-rate increased in the presence of damaged DNA (185 ± 6 s-1) indicating 

that more DNA polymerases were bound to DNA in long-term repair events (from 4 to 13%) and 

that also the polymerases engaged in probing spent more time bound to DNA. Altogether, these 

numbers would indicate that DNA polymerase in the presence of MMS spent ~ 75% of its time to 

DNA either at a repair site (13%) or while probing the DNA (60%). 
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We further found that the maximum step size of 5 pixels used in the original analysis significantly 

affected the distribution of observed D* values (Figure S5). AnaDDA was able to correctly predict 

and take this effect into account. Overall, the transition rates between bound and unbound 

polymerase found under both conditions are high compared to the frame rate (>1 transition per 

frame), which demonstrates the applicability of anaDDA to quantify very fast transition kinetics 

in vivo. 

Discussion 

Analytical diffusion distribution analysis (anaDDA) is able to accurately extract kinetics occurring 

within 4 orders of magnitude with around 10 to 0.01 transitions per frame. With conventional 

camera frame rates of 100 Hz, this range translates to interaction kinetics of 1 ms to 1 s even if the 

mean track length is as short as 3-4 frames. Furthermore, anaDDA is able to account for 

confinement and tracking window effects and has the possibility to fit data acquired at multiple 

frame times into a single global model. The re-analysis of previously published data on DNA 

polymerase I in E. coli suggests that this protein complex uses rapid probing of DNA and therefore 

spends more than 50% of its time bound to DNA, a value previously hypothesized based on its 

preferred localization in the nucleoid but not quantified up to now. These new insights into the 

biology of DNA polymerase in vivo, can experimentally be further tested. The predicted times 

spent on DNA in the absence (60%) and presence of MMS (75%) can be independently quantified 

by measuring the ratio of polymerases in DNA-containing and DNA-free segments of cells 

elongated by cephalexin as was done previously for CRISPR-Cas complexes in E. coli47.  

Compared to other simulation-based frameworks for estimating transition rates48–50, anaDDA 

holds several advantages. First, the distributions of simulations are not exact as they are generated 

from a limited number of particles and therefore do not allow for using an MLE approach, which 
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requires convergence based on exact probability even for small changes in the parameter space. 

Secondly, since analysis methods can only be verified by knowing the ground truth, these 

algorithms can only be tested with and against simulations itself. Consequently, the analysis and 

verification data are not independent, which could lead to unobservable errors. Furthermore, our 

analysis method is computationally significantly faster. MLE takes just around 15 s to find the 

optimal parameter set for a global fit to a 50.000 tracks dataset with a track length range of 1-8 

steps (Intel Core i7), whereas a simulation estimating three parameters with a global fit of all step 

sizes, required around 10 hours to find an optimal set of parameters.  

So far, it is possible to include two transitioning state into the direct fitting. We have shown, 

however, that when transition rates are slow compared to the frame time of the measurement, states 

can be treated as separate species. Further development of the underlying master equations of PDA 

statistics could allow direct implementation of multistate models.  

With the increasing use of brighter and more stable organic fluorophore14,51 or low photon flux 

measurements52 for single-particle tracking, the resulting increase of the track length and the 

decrease of the localization error will enable further improvements in the precision of extracted 

kinetic parameters. Currently, we have implemented the software for tracking in two dimensions, 

but the algorithms can be further modified towards tracking in three dimensions. Using the 

estimated error for each individual localization can further improve the robustness of the analysis 

as has been demonstrated previously53. Another improvement which can be incorporated in our 

framework and has already been developed is to take the effect of particles moving out-of-focus, 

and the recovery of localizations depending on diffusion coefficients into account38,50. 
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Our analysis method allows the quantification of fast kinetic transitions inside living cells with 

state lifetimes in the 1 ms to 1 s range opening a temporal range at which many DNA screening 

interactions are expected to take place54. So far however, quantifying these interactions has been 

limited due to a lack of appropriate analytic and experimental methods. We are convinced that 

anaDDA will offer the means to determining fast kinetics in vivo which will be key to uncover and 

understand the behaviour of biomolecular complexes in cells. 
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Figure 1. Analytical DDA (A) The effect of transition rates on D* distributions is depicted with 

simulated tracks of four steps and different transition rates. With increasing transition rates relative 

to the track length, the bound and unbound distributions start merging towards an intermediate 

apparent diffusion speed diffusivity (right). (B) Procedure of analytical DDA: The D* values from 

tracked single particles are run into an MLE optimization program which refines a set of start 

parameters based on the likelihood to find a certain value given the number of tracks (all tracks 

longer than 8 are reduced to the first 8 steps). (C) Comparison of simulated (grey bars) and 

theoretically predicted (black line) distribution with different amount of tracks and the following 

starting parameters: 𝑘on
∗  = 0.2 frame-1, 𝑘on

∗  = 0.2 frame-1, 𝐷free = 4 µm2/s and σ = 30 nm 

(localisation precision). Tracks are simulated without any confinement boundaries. The 

Kolmogorov-Smirnov test statistic (DKS) is indicated at each histogram. (D) The Kolmogorov-

Smirnov test statistic compared to the threshold for statistically distinguishable distributions. 

Values above the threshold line indicate that two distributions significantly differ from each other. 

Error bars indicate S.E.M. of three independent simulations. (E) Comparison of simulated D* 

distributions (grey) and the distributions calculated with analytical DDA for different transition 

rates (black). The shape of the distributions depends on both the ratio between 𝑘on
∗  and 𝑘off and 

the absolute values of these parameters. In this example 𝐷free = 4 µm2/s and σ = 30 nm. For more 

tested parameters see Figure S1. 
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Figure 2. MLE extraction of parameters. The accuracy is calculated through the value of the 

geometric mean (dashed black line) and the precision is calculated through the geometric standard 

deviation of 10 independent simulations. The length of tracks was exponentially distributed with 
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a mean of three steps and a cut off at 8 steps (𝐷free = 4 µm2/s, σ = 30 nm). (A-C) Effect of data 

size on accuracy and precision of extraction of (A) 𝑘off, (B) 𝑘on
∗  and (C) 𝐷free for n=5.000 tracks 

(yellow), 10.000 tracks (orange) and 50.000 tracks (red). (D-F) Comparison of anaDDA versus 

vbSPT and SMAUG on accuracy and precision of extraction of (D) 𝑘off, (E) 𝑘on
∗  and (F) 𝐷free. 

50.000 tracks were used for both methods.  
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Figure 3. Effects of geometrical confinement and the length of the tracking window. (A) 

Typical confinement shapes within cells. The boundary shape of spherical cells is defined by a 

single parameter (radius; rconf.), whereas rod-shaped cells are defined by two parameters (radius 

and length; rconf. and lconf.). (B-C) Influence of spherical and rod-shaped boundaries on the 

distribution of simulated (grey box) and uncorrected DDA (grey line) and corrected DDA (black 
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line) distributions. (𝑘off = 0.2 frame-1, 𝑘on
∗  = 0.2 frame-1) (D-E) Influence of spherical and rod-

shaped cells on the estimation of parameters of DDA on unconfined simulated trajectories 

(yellow), uncorrected DDA on confined simulated trajectories (orange) and corrected DDA on 

confined trajectories (red). (F-G) Same as B-E except for simulated trajectories with a maximum 

step size. Simulation parameters: 𝐷free = 4 µm2/s and σ = 30 nm (localisation precision), N = 

50.000. The Kolmogorov-Smirnov test statistic (DKS) is indicated in each histogram.   
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Figure 4 Three-state models and multiple frame times (A) Three-state models cannot be 

directly described with PDA statistics. If some interactions are slower than the typical frame time, 

however, the approximation can be made that they belong to a non-transitioning separate species. 

The expected fraction of each of this species can be calculated from the on and off-rates of all 

states (right). (B) Comparison of a simulated three-state model (𝑘off,1 = 0.01 frame-1, 𝑘on,1
∗  = 0.005 
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frame-1, 𝑘off,2 = 0.2 frame-1, 𝑘on,2
∗  = 0.2 frame-1) with a predicted theoretical approximated two-

species model, where the slower transitioning state is approximated as a separate immobile species 

(red) and the other species (blue) still contains two states with 𝑘off,2 and 𝑘on,2
∗  as transition rates. 

Upper panel track length of 4 steps, lower panel track length 8 steps. (C) Best fit of the simulated 

three-state model from (B) with a single-species two-state model. (D) MLE extraction of the 

expected fraction of the first approximated species for different values of 𝑘off,2 (E) Heat map of 

the log(DKS) between a simulated distribution (𝐷free= 1, fraction immobile = 0.1; ground truth (red 

dot)) and a theoretical predicted distributions with varying parameters around the parameters used 

for the simulation, where the simulation consisted either of 100.000 tracks at 10 ms frame time 

(left), 100.000 tracks at 50 ms frame time (middle) or 50.000 tracks at 10 ms frame time and 50.000 

tracks at 50 ms frame time respectively (right). The Kolmogorov-Smirnov test statistic (DKS) is 

indicated in each histogram. 
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Figure 5. Extracting kinetic information of DNA polymerase I diffusing in live E. coli. (A) 

Approximated model of the kinetic model of DNA polymerase diffusion containing a DNA 

repair and DNA probing state (left). These states were separated into a single-state repair species 

(species 1; middle) and a probing species with two states (species 2; middle) The fraction of the 

two species are caused by the underlying ratios of the on- and off rates (right; Fig. 4A) (B) Fit of 

DNA polymerase I in untreated cells (n = 179.511 tracks). The D* was fit with two species, one 

species involved in repair (red line) with a single state (immobile) and one species involved in 

scanning DNA with two states (mobile and immobile; blue line). The transition between the 
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latter two states and the free diffusion coefficient of the mobile state are depicted. Fit was 

performed on all track lengths (1-8 steps) and histograms are only shown for a single-track 

length (4 steps). Tracks with more steps were truncated to 8 steps for the fit and 4 steps for the 

histogram. (C) Same as B but performed on data of DNA polymerase in cells treated with MMS. 

(D) Same as C except that the free diffusion coefficient of the mobile state was fixed to the same 

value as was found for polymerase in untreated cells (B).The Kolmogorov-Smirnov test statistic 

(DKS) is indicated in each histogram and uncertainty in parameters were estimated with 

bootstrapping (±SD). Experimental data was taken from a previous study17. 
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