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ABSTRACT

Prokaryotes use primed CRISPR adaptation to up-
date their memory bank of spacers against invad-
ing genetic elements that have escaped CRISPR in-
terference through mutations in their protospacer
target site. We previously observed a trend that
nucleotide-dependent mismatches between crRNA
and the protospacer strongly influence the efficiency
of primed CRISPR adaptation. Here we show that
guanine-substitutions in the target strand of the pro-
tospacer are highly detrimental to CRISPR inter-
ference and interference-dependent priming, while
cytosine-substitutions are more readily tolerated.
Furthermore, we show that this effect is based on
strongly decreased binding affinity of the effector
complex Cascade for guanine-mismatched targets,
while cytosine-mismatched targets only minimally
affect target DNA binding. Structural modeling of
Cascade-bound targets with mismatches shows that
steric clashes of mismatched guanines lead to unfa-
vorable conformations of the RNA-DNA duplex. This
effect has strong implications for the natural selec-
tion of target site mutations that lead to effective es-
cape from type | CRISPR-Cas systems.

INTRODUCTION

Clustered regularly interspaced short palindromic repeats
(CRISPR) together with CRISPR-associated (Cas) pro-
teins provide immunity against foreign nucleic acids in
prokaryotes (1,2). The constant battle between prokary-
otes and their viruses is one of the oldest and most promi-
nent predator-prey interactions on our planet (3,4). The
CRISPR array consists of identical repeat units separated

by unique spacers. In many cases spacer sequences are de-
rived from foreign genetic elements although ‘self’-derived
spacers can also be found (5-9). CRISPR-Cas systems are
currently divided into class 1 and class 2 systems, encoding
multi-subunit or single-subunit crRNA effector complexes,
respectively (10-12). Class 1 systems encompass type I, 111
and IV, while class 2 consists of types II, V and VI. Type I
systems are the most widely distributed CRISPR type mak-
ing up approximately 50% of all CRISPR systems in both
Bacteria and Archaea (10). Type I CRISPR-Cas systems
contain the universally conserved cas! and cas2 genes, the
hallmark cas3 helicase-nuclease and a set of genes encoding
for the Cascade-like effector complexes. The mechanism of
CRISPR-Cas defence is divided into three stages: adapta-
tion, expression and interference (13). First, a new spacer
is acquired from an invader DNA that has not previously
been encountered and is incorporated into the CRISPR
array by the Casl-2 complex (adaptation) (1,14). Next,
the whole array is transcribed from the AT-rich leader se-
quence into long pre-CRISPR RNA (pre-crRNA) and sub-
sequently processed into mature crRNAs that each carry
one spacer (expression) (2,15). The crRNA assembles with
Cas proteins to form surveillance complexes that make up
the core of all CRISPR systems (10). In the last stage (inter-
ference), these surveillance complexes scan the cell for com-
plementary targets and flag them for destruction, leading to
immunity (16-19). Invaders can escape immunity by acquir-
ing mutations in their recognition sequence (protospacer)
or protospacer adjacent motif (PAM), which implies that
the host has to acquire a new spacer in order to regain im-
munity. Several type I systems possess a primed acquisition
mechanism that leads to rapid acquisition of new spacers
when escape protospacers are detected and interference lev-
els are insufficient to clear a threat (20-24). Unlike naive ac-
quisition, which requires only cas/ and cas2, primed acqui-
sition requires all cas genes and a targeting spacer (21,25).
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A number of studies have described the effect of muta-
tions on interference and priming in the type I-E system of
Escherichia coli. Two early studies have shown, on a small
scale, that interference tolerates only few mutations in the
protospacer, and no mutations in the seed and PAM, while
priming is slightly more tolerant (21,26). Our previous work
has extended this knowledge on a large scale, showing that
interference tolerates mutations in the seed to a low degree
and that priming is extremely robust against mutations in
the entire protospacer (27). More recently, it was shown
that mutation tolerance of the different immune responses
is dependent on the spacer choice (28), and that the binding
affinity of Cascade to target DNA is a major determinant
for interference and priming (29).

While the number and position of the mutations is clearly
important, we previously observed that the identity of an
individual protospacer mutation (A, C, G or T) has a large
effect on the efficiency of primed spacer acquisition as well
(27). Cytosine substitutions in the target strand of the pro-
tospacer appeared to positively affect priming, while gua-
nine substitutions negatively affected priming. In contrast,
adenine and thymine did not show that trend, suggesting
something more complex than a purine or pyrimidine effect.

Here, we show that C and G mutations affect priming by
altering the rate of target degradation. We show that, while
the overall effect is strongly dependent on the position of
the mutations, C mutations repress interference only moder-
ately compared to G mutations at the same protospacer po-
sitions. Furthermore, we show that this property is caused
by a higher mismatch penalty for G mutations in the target
strand of the protospacer compared to C mutations, result-
ing in lower Cascade binding affinities for mutant targets
containing G substitutions. Finally, we use structural mod-
eling to reveal that the molecular basis of this nucleotide
bias resides in steric hindrance of mismatched guanines in
the target strand of the protospacer.

MATERIALS AND METHODS
Bacterial strains and growth conditions

Escherichia coli strain KID263 was obtained from (30). Es-
cherichia coli strains were grown at 37°C in Luria Broth
(LB; 5 g/l NaCl, 5 g/1 yeast extract, and 10 g/I tryptone) at
180 rpm or on LB-agar plates containing 1.5% (w/v) agar.
When required, medium was supplemented with the follow-
ing: ampicillin (Amp; 100 pg/ml), chloramphenicol (Cm;
34 pg/ml), or kanamycin (Km; 50 g/ml). Bacterial growth
was measured at 600 nm (ODgqp).

Molecular biology and DNA sequencing

All oligonucleotides are listed in Supplementary Table S3.
All plasmids are listed in Supplementary Table S4. All
strains and plasmids were confirmed by PCR and se-
quencing (GATC-Biotech). Plasmids were prepared us-
ing GeneJET Plasmid Miniprep Kits (Thermo Scientific).
DNA from PCR was purified using the DNA Clean and
Concentrator and Gel DNA Recovery Kit (Zymo Re-
search). The protospacer plasmid set was constructed by
cutting pWUR925 with Xbal and Sacl, removing the

kanamycin resistance marker, and ligating a PCR prod-
uct containing the streptomycin resistance marker and the
desired protospacer (primers: BG7167/7395-7 for controls,
BG7167/8393-8410 for mutant set).

Plasmid loss assay

The assay was carried out in E. coli KD263 cells, which
have inducible cas gene expression. Expression was induced
with 0.2% L-arabinose and 0.5 mM IPTG where appropri-
ate. Escherichia coli KD263 cells were transformed with the
target plasmids (pWUR926-946) by heat shock. Individual
colonies were picked in duplicate and grown overnight in 5
ml LB supplemented with 2% glucose to repress cas gene
expression. The next day, cultures were transferred 1:100
into induced medium (0.2% L-Arabinose, 0.5 mM IPTG)
and plasmid loss was monitored. Samples were taken at the
time of induction and 1.5, 3, 4.5, 6, 7, 24 and 48 h post in-
duction (HPI). Dilutions were plated on non-selective plates
containing 0.2% rhamnose and plasmid loss was quanti-
fied based on loss of red color. Liquid culture samples were
screened for spacer integration by colony PCR using One-
Taq (NEB). Acquisition of spacers was detected by PCR
using primers BG5301 and BG5302. PCR products were
visualized on 2% agarose gels and stained with SYBR-safe
(Invitrogen). PCR products were sequenced using Sanger
sequencing at GATC (Konstantz, Germany) using primer
BG5301.

Protein purification

All proteins were expressed in BL21-Al cells. Cascade was
purified as described earlier (31). MBP-Cas3 was purified as
described in (32).

Oligo annealing and labelling

Complementary oligo nucleotides (BG9069-9074) were
mixed (1:1) in a Tris-sodium buffer, heated to 95°C and
slowly cooled to room temperature. Duplexes were checked
on a native 20% acrylamide gel for residual single stranded
oligo. The non-target substrate was PCR amplified from
pWUR928 using BG9141/2. Duplexes were then labeled
with y-?P-ATP using T4 PNK (NEB) and free label was
removed using a G25 column.

EMSA assays

Purified Cascade complex with spacer8 crRNA was incu-
bated with plasmid or oligos at a range of molar ratios (1:1-
96:1, Cascade:DNA) in buffer A (20 mM HEPES pH 7.5,
75 mM NaCl, ] mM DTT) for 30 min (33). Plasmid reac-
tions were run on 1% native agarose gels for 18 h at 22 mA
in 8 mM sodium-borate buffer. Gels were post stained with
SYBR Safe (Invitrogen). Oligo reactions were run on 5%
native acrylamide gels at 4 mA for 18 h. Gels were exposed
to a phosphor screen (GE Healthcare) and scanned using a
phosphor imager (Bio-Rad PMI). Shifted (Cascade bound
DNA) and unshifted (free DNA) bands were quantified us-
ing the GeneTools software (Syngene) or Imagel and free
Cascade concentration (X) was plotted against the fraction
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of bound DNA (Y). The curves were fitted with the follow-
ing formula: Y = (amplitude * X)/(K4 + X) (34). The ampli-
tude is the maximum fraction of bound DNA. The affinity
ratio is determined as amplitude/ K to correct for the vari-
able amplitudes (35).

Cas3 DNA degradation assays

Plasmid-based assays were performed by incubating 70 nM
Cas3 with 100 nM Cascade and 3.5 nM plasmid DNA. Re-
actions were incubated in buffer R (5 mM HEPES, pH 8§, 60
mM KCIl) supplemented with 10 wM CoCl,, 10 mM MgCl,,
2 mM ATP at 37°C for the indicated amount of time. Re-
actions were quenched on ice with 6x DNA loading dye
(Thermo scientific). Reactions were run on 0.8% agarose
gels at 100 V for 40 min and supercoiled plasmid bands were
quantified using the GeneTools software (Syngene).

Structural modeling of target mismatches

Atomic models of the Cascade complex bound to mis-
matched DNA targets were made with the molecular mod-
eling program Coot (36). To visualize how G and C mis-
matches would affect target binding, the G and C mis-
matches of the C7/G7 target were modeled into the crRNA
spacer sequence of dSDNA bound Cascade, (PDB: SHI9E),
using the simple mutate tool in Coot. To model wobble
basepairs the Rotate Translate Zone/Chain/Molecule tool
was used to move nucleotides of the target strand as a rigid
bodies into wobble positions. Rendering of atomic model
images was performed with PyYMOL Molecular Graphics
System, Version 2.0 Schodinger, LLC.

RESULTS
Statistical scoring of C and G mutants

Previously we performed a high throughput plasmid loss
assay with a large library of PAM/protospacer mutants,
which lead to their classification as causing either (i) in-
terference, (ii) priming or (iii) stable plasmid maintenance
(27). Data analysis revealed a nucleotide bias, where C or
G mutations have a positive or negative effect on priming,
respectively. However, mutants were scored for the num-
ber of C or G mutations irrespective of the presence of any
other mutations. To verify that the observed effect is purely
based on the C and G mutations, we re-analyzed the orig-
inal dataset, but this time we selected mutants with only C
or G mutations to exclude the influence of other mutations
(Figure 1A). All analyses were done using effective muta-
tions, thus excluding positions 6, 12, 18, 24, 30 (i.e. kinks) in
the crRNA-DNA duplex, which do not participate in base
pairing (27,37-39). We included mutants with at least two
effective mutations, since single mutants do not show a nu-
cleotide specific effect and most single mutants lead to di-
rect interference (27). Strictly C,, or G, mutants (n > 2, 500
total) were grouped according to their classifications and
counted (Figure 1B). The priming group contains mainly C
mutants (117 out of 152, 77%), while the stable group con-
tains mostly G mutants (94 out of 108, 87%). This confirms
that C mutations generally stimulate priming, while G mu-
tations generally repress priming. Interference has only a
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slight preference for C mutants over G mutants (56%/44%
for C/G respectively), which suggests either that interfer-
ence is largely unaffected by the type of mutation or that the
nucleotide bias is not pronounced enough in interference
because the majority of mutants in this group carry only two
effective mutations. We consider it very likely that the type
of mutations indeed also affects direct interference, because
priming is directly dependent on interference (20,35,40-42).

To address the question to what extent priming and in-
terference are influenced by the type of mutations, and to
analyze the effect of the mutations in more detail, we se-
lected four priming protospacers from the dataset with only
C mutations (1C-4C) and five stable protospacers with only
G mutations (5G-9G) (Supplementary Table S1). The mu-
tants were selected based on two criteria: (i) the mutations
had to be effective mutations (i.e. not at kink positions), and
(i1) the original nucleotide must be A or T, so that we can
switch the mutations from C to G or vice versa without re-
verting to WT. After selecting the mutants, we designed the
respective conversion mutants (1G-4G, 5C-9C).

G mutants strongly inhibit direct interference

First we performed plasmid loss assays to accurately deter-
mine and quantify the ability of the mutant protospacers to
trigger direct interference and priming. No plasmid loss and
no spacer acquisition was observed with a non-target plas-
mid after 48 h, showing that CRISPR-independent plasmid
loss and naive acquisition do not occur at detectable lev-
els in this timeframe. When comparing the respective pairs
of C and G mutants, we observed that the C mutants con-
sistently showed more rapid plasmid loss than the G mu-
tants (Figure 2A and B, Supplementary Figure S1). Espe-
cially, some mutants that were switched from G to C (5C,
7C, 8C) drastically increased their speed of plasmid loss to
almost WT levels. Two pairs of mutants show only small
differences between the C and G version (6C/G, 9G/C).
The original 9G mutant already shows rapid plasmid loss,
which simply cannot be increased much more in the 9C mu-
tant. The original 6G mutant is stable and the 6C mutant is
only able to show strongly delayed priming. This is likely
an additive effect of the individual positions of the muta-
tions (15,20,21,32), which might be more detrimental for
interference/priming regardless of nucleotide identity. Po-
sition 15 and 21 are in fact the middle positions of their re-
spective segments, which we have previously shown to be
more sensitive to mismatches (35). In many of the mutants,
significant plasmid loss was observed within 5 hours, in-
dicating that this was caused by direct interference rather
than priming (Figure 2A and B). This is supported by the
analysis of spacer acquisition showing that spacer acquisi-
tion initiated after the onset of plasmid loss (Figure 2A-C).
Spacer acquisition also initiated earlier in most C mutants
compared to their respective G mutants. The extent of prim-
ing, i.e. the fraction of the population that acquired new
spacers, on the other hand is not consistent with the type of
mutations. For example, the 9G/C mutant pair where the
interference is already very high in the G mutant (and even
higher in the C mutant) shows opposite behavior with re-
spect to their priming response. Here, the G mutant shows
a low level of early priming, while the C mutant shows no
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Figure 1. Statistics of G/C bias. (A) Schematic representation of G and C mutants in an R-loop with crRNA. The mutation refers to the nucleotide
substitution in the basepairing strand of the dsDNA target in the context of the R-loop. (B) Statistical analysis of the high throughput plasmid loss dataset
from (27). Only effective mutations, thus excluding positions 6, 12, 18, 24, 30, are considered. Mutants with only C or G mutations (>2) are counted for

each group of immune responses (Interference, Priming, Stable).

priming. We observe that the extent of priming is the highest
when plasmid loss is occurring at intermediate speeds, while
rapid or slow plasmid loss leads to a low extent of priming
(Figure 2D). This is very well in line with the model pro-
posed in previous work, i.e. that priming is dependent on
inefficient interference that leads to persistence of the in-
vader in the host cell, providing sufficient time for spacer
acquisition to take place (35,40,41,43). In summary, mutant
protospacers with mismatched guanines in the target strand
inhibit CRISPR interference and priming much more than
cytosines.

G mutants inhibit Cas3 degradation rate

To elucidate the molecular basis of this difference in inter-
ference of C and G mutants, we first performed Cas3 activ-
ity assays with the set of target plasmids as an indicator for
the level of direct interference and interference-dependent
priming (35). Cas3 assays show a higher average activity of
C mutants over G mutants (Figure 3, Supplementary Figure
S2). Furthermore, looking at the individual C/G mutant
pairs, we see consistently higher activity of the C mutants
compared to their corresponding G mutants. This confirms
that the more rapid plasmid loss of C mutants is indeed
caused by a more efficient plasmid degradation by Cas3.

G mutations in the target strand disrupt Cascade binding

To determine whether the difference in Cas3 activity is
caused by affinity differences of Cascade for the mutant
protospacers, we performed sensitive DNA binding assays.
These assays were set up to assess whether DNA binding
affinity is affected only by the mismatches between the cr-
RNA and the DNA target strand, or also by nucleotide
preferences of Cascade in the non-target strand. The non-
target strand has been proposed to make interactions with
the Cse2 dimer and might therefore have an effect on overall

R-loop stability (39,44-47). To address these questions, we
designed oligonucleotides for each strand carrying a pro-
tospacer with the WT sequence, C mutations or G mu-
tations. The sequences were chosen based on the mutant
pair 7C/G. The oligonucleotides were annealed in certain
combinations that allow investigation of the effect of the
mutations in either strand separately (Figure 4A). We then
performed electrophoretic mobility shift assays (EMSA) to
measure the binding affinity of Cascade with the five differ-
ent oligo duplexes (Figure 4B). This revealed that the muta-
tions in the non-target strand have little effect on the affin-
ity and that C mutations on the target strand are readily
tolerated. However, G mutations in the target strand dis-
rupt Cascade binding to a much greater extent than C mu-
tations. The affinity ratio (amplitude/Ky, higher is better)
is used as a proxy for binding affinity, since both the am-
plitude (maximum binding) and the Ky are variable (35).
We observed very similar binding affinity for the C and G
mutants of the non-target strand (WTt/Cnt, WT1/GnNr),
the full WT duplex (WTt/WTnr) and the C mutant of
the target strand (Ct/WTyr) (Figure 4B, Supplementary
Table S2). Although the C mutant in the target strand
(Cr/WTnr) shows a lower amplitude than the others (0.7
versus ~1), it also has a very low K4 (13 nM versus 23—
46 nM) (Supplementary Table S2). This shows that bind-
ing in the Cpr/WTyNr mutant is only slightly impaired at
higher protein concentrations, while affinity seems unaf-
fected at low protein concentrations. The G mutant in the
target strand (Gt/WTnr), in sharp contrast, shows almost
no detectable binding.

Steric clashes of mismatched G nucleotides likely distort tar-
get conformation

To better understand the molecular basis of why G mutants
disrupt Cascade binding more than C mutants, we mod-
eled the G and C mismatches of the C7/G7 target onto the
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of plasmid degradation per minute. The rates are the average of two inde-
pendent experiments, error bars indicate the individual measurements. C
mutants are indicated by full circles, G mutants are indicated by empty cir-
cles. Individual Cas3 activity graphs can be found in Supplementary Figure
S2.

crystal structure of Cascade bound to a dsDNA (Figure
5A and B) (44). The crRNA of Cascade pairs with com-
plementary DNA with five pseudo-A-form segments of five
nucleotides that superimpose with an RMSD of ~0.45 A
(34,37-39,44). Thumb domains of adjacent Cas7 subunits
flank each base paired segment at six nucleotide intervals,
making direct contacts with the crRNA and bound tar-
get. Simple replacement of T’s for G’s to form dG:rA mis-
matches at spacer positions 4 and 27 reveals steric clashes
between the G and A bases, while modeled dC:rA mis-
matches show no clashes (Figure 5C). A Watson Crick
alignment of the dC:rA pair suggests the mismatch can-
not form any hydrogen bonds, but lateral motion across
the Watson—Crick Face of the dC:rA mismatch may al-
low a dC:rA+ wobble to form that could possibly stabilize
the mismatch. Simple mutation of A nucleotides to G’s at
spacer positions 13 and 31 initially suggested room for the
mismatch. However, electrostatic repulsion between the O-
6 position of G and the O-2 position of U likely pushes
the G’s towards a more thermodynamically stable dG:rU
wobble conformation. Our model suggests dG:rU wobbles
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may be allowed through most positions of the duplex, how-
ever when the dG:rU wobble conformation is modeled at
the first position of the five nucleotide segment a large clash
between the G and the adjacent thumb is observed (Figure
5D). Because of electrostatic repulsion between G and U
in a Watson—Crick conformation, and the inability to form
a stable wobble because of clashes with the Cas7 thumb,
dG:rU mismatches adjacent to Cas7 thumbs on the PAM
distal side (positions 7, 13, 19, 25 and 30 of the spacer) likely
cause distortions in the phosphate backbone of the target.
In contrast, dC:rU mismatches at these thumb adjacent po-
sitions appear to be able to adopt a normal backbone con-
formation.

In conclusion, the strict structure and extensive interac-
tion of protein backbone and guide RNA results in a com-
plex range of nucleotide and position specific effects, where
a mismatched dG is often detrimental to the stability and
alternative basepairing potential of a complex with target
DNA.

DISCUSSION

In this study, we have shown that the type I-E CRISPR-
Cas system more readily tolerates cytosine mutations in the
target strand of the protospacer, while guanine mutations
severely reduce the efficiency of direct interference. This dif-
ference is caused by a strong reduction of Cascade bind-

ing affinity of targets with guanine substitutions in the tar-
get strand of the protospacer, while the binding affinity is
hardly affected in case of cytosine substitutions. The de-
creased binding affinity results in lower target degradation
rates and consequently affects the interference-dependent
priming process. The direct effect on interference and prim-
ing of the G mutants is also shown by the fact that, although
C mutants in all cases lead to earlier priming than G mu-
tants, the extent of priming in the whole population is not
directly related to the type of mutation. Instead, the extent
of priming follows the model that was conceived in an early
study (20) and established in recent studies. These studies
showed that the priming process is directly dependent on
direct interference (40-42) and that in fact direct interfer-
ence produces the precursor molecules for new spacers that
fuel the priming process (35). However, next to requiring in-
terference for the production of precursors, priming is also
dependent on sufficient time of persistence of invader DNA
in the cell. Only prolonged persistence gives sufficient op-
portunity for spacer capture and integration. Thus, a very
high rate of direct interference, such as for a WT target or
the C9/G9 mutant pair in this study, on the one hand leads
to a very early onset of priming, but on the other hand to a
very low extent of priming. Mutants with low rates of direct
interference lead to late onset of priming and a low extent
of priming due to the lack of precursor generation. Mutants
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Figure 5. Guanine mismatches clash with adenosine bases and the PAM distal side of Cas7 thumbs. (A) Schematic of the crRNA with repeats colored
black, spacer colored blue, and complementary DNA sequence colored green. Mismatch positions with the seven C/G target DNA are highlighted in
red. (B) Schematic (left) and surface rendition of the crystal structure of Cascade bound to a dsDNA target (pdb SH9E). Protein subunits are colored
grey. The crRNA and target DNA are colored as in A. Csel, Cse2 and Cas5 subunits are shown as transparent to better visualize the mismatch positions
(red). (C) G and C mismatches were modeled into the Cascade structure at 7 C/G mismatch positions. Hydrogen bonds are indicated as dashed lines.
Representatives of dG:rA (left) and dG:rU (right) mismatches are shown. Clashes are depicted as red lines. (D). Representatives of dC:rA+ (left) and
dC:rU (right) mismatches are shown. No clashes are expected.
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with an intermediate rate of direct interference, however, re-
sult in relatively early and a high extent of priming, due to
prolonged persistence and simultaneous degradation of the
invader.

The crRNA-target DNA hybrid in Cascade makes in-
tensive contact with the Cascade protein distorting the du-
plex away from a classic A-form helix conformation. There-
fore, we cannot use available thermodynamic models for
determining mismatch energies of A-form RNA-DNA hy-
brids (48-52). Instead, by modelling mismatched C and G
nucleotides into an existing crystal structure of the target
bound Cascade complex, we show steric clashes for dG:rA
mismatch pairs, while dC:rA pairs fit well in the existing
structure. The dC:rA mismatch pair, in addition, might even
be stabilized by a dC:rA+ wobble if the bases shift out of
the standard Watson Crick alignment. Our model suggests
dG:rU mismatch pairs likely form electrostatically favor-
able wobble pairs. There appears to be room enough around
each base pair for such a wobble to form except for posi-
tions adjacent to the Cas7 thumbs but distal to the PAM
(positions 7, 13, 19, 25, 31). At these positions the G base
clashes with the Cas7 thumb. Thus, dG:rA mismatch pairs
at every position, and dG:rU pairs at thumb adjacent posi-
tions may result in clashes that likely cause a distortion of
the phosphate backbone of the DNA target strand to ac-
commodate the G bases. This distortion in the DNA back-
bone might additionally disrupt basepairing at neighboring
positions. Target DNA binding has been shown to initiate
at the PAM and progress in a directional zipping process,
starting from the PAM proximal end of the protospacer
(seed) (53-55). Usually, after complete basepairing of the
target DNA, the Cascade complex undergoes a conforma-
tional change by shifting its Cse2 subunits, thereby lock-
ing the target (54,56,57). This locked state leads to very
high affinity binding and is required for interference. Mu-
tations have been shown to prevent Cascade from entering
the locked state, but this strongly depends on the amount
and position of the mutations (56,57). It is possible that the
distortion of the DNA backbone by mismatched G bases ei-
ther strongly interrupts the zipping process or prevents the
Cascade complex to change into the locked conformation,
therefore causing the greatly reduced binding affinity that
we observed.

The detrimental effect of G mismatches also has conse-
quences for the success of viral escape mutants. Although
viruses have been shown in a number of systems to prefer-
ably mutate the PAM or seed to escape CRISPR—Cas im-
munity (26,58-62), systems capable of priming can rapidly
regain immunity against these mutants (21-23,27). Thus,
only mutants with sufficient mutations to completely es-
cape immunity have increased long-term survival. For these
escape viruses it would therefore be beneficial to accumu-
late G mutations in the targeted strand of their protospac-
ers to maximize the chances of escape. Since the CRISPR-
Cas system can target either strand, viruses cannot simply
prefer G over C substitutions in general. Instead, the selec-
tive pressure on the viruses by type I systems should lead
to an overrepresentation of G mutations in protospacers
of viruses in natural ecosystems. However, detection of this
in natural systems would require very deep sequencing of
metagenomes. Alternatively, laboratory co-evolution exper-

iments with host and phage should reveal a biased mutation
strategy of viral escapers.

No comparable nucleotide bias has yet been described
for other CRISPR—Cas systems, however, it is possible that
other type I Cascade-like complexes exhibit similar biases
due to rigid crRNA structure, extensive protein—-RNA inter-
actions and distorted helix conformation. Type II effector
complexes (e.g. Cas9 and Casl2) make intensive protein—
RNA interactions with the repeat part of the crRNA and
the tracrRNA (63-65). However, the spacer part of the cr-
RNA is flexible and not anchored at the 5’ end, allowing
uninterrupted basepairing of guide and target by winding
of the guide around the target. Although the guide-target
duplex in Cas9 also does not form a regular A-form he-
lix, the less rigid nature of the guide RNA likely incorpo-
rates mismatched bases more easily. Consequentially, Cas9-
target interactions are much more determined by thermo-
dynamics and kinetics rather than structural implications
(66,67). Effector complexes in type I1I systems have a sim-
ilar overall architecture to Cascade, with a tightly bound
crRNA that makes extensive contact with the protein back-
bone (68). However, type I1I effector complexes are mecha-
nistically very distinct from Cascade, containing nuclease
functionality, targeting RNA, and being able to degrade
single stranded DNA non-specifically during transcription
(17,69-73). Furthermore, it was recently shown that type I11
systems have a very high targeting flexibility, requiring viral
escapers to lose the entire protospacer (74). Thus, despite
structural similarities between type I and type 111 systems,
type III effector complexes can bind to highly mismatched
targets efficiently, while type I effector complexes display se-
vere penalties in binding affinity. This apparent disadvan-
tage of type I systems is resolved by the priming mechanism,
which can be triggered even by highly mismatched, low
affinity targets and restore immunity. In summary, we have
demonstrated that, besides well-known positional effects of
mutations in protospacers, the identity of a mismatch pair
strongly affects CRISPR interference and priming.
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