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Abstract

The last decade has witnessed a remarkable increase in our ability to measure genetic infor-

mation. Advancements of sequencing technologies are challenging the existing methods of

data storage and analysis. While methods to cope with the data deluge are progressing,

many biologists have lagged behind due to the fast pace of computational advancements

and tools available to address their scientific questions. Future generations of biologists

must be more computationally aware and capable. This means they should be trained to

give them the computational skills to keep pace with technological developments. Here, we

propose a model that bridges experimental and bioinformatics concepts using the Oxford

Nanopore Technologies (ONT) sequencing platform. We provide both a guide to begin to

empower the new generation of educators, scientists, and students in performing long-read

assembly of bacterial and bacteriophage genomes and a standalone virtual machine con-

taining all the required software and learning materials for the course.

Author summary

Genomes contain all the information required for an organism to function. Understand-

ing the genome sequence is often the key to answer important biological questions. For

example, the sequences of human genomes are used for diagnosis of genetic disorders or

for the development of personalized treatments, while the sequences of microbes may

inform about their mechanisms of infection and guide the development of novel drugs.

Today, our capacity to generate genome sequencing data is tremendous. However, our

capacity to process this information is insufficient. This is partially due to limitations of

current methods for data analysis but is mostly caused by lack of training for most biolo-

gists to leverage high-throughput sequencing data and use their full potential. It is urgent

that we train the new generations of biologists to become computationally aware and able

to keep pace with technological developments in the field. In this manuscript, we illustrate

our efforts in adopting an integrated teaching model that bridges experimental and
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bioinformatics works. Our course integrates data generation in the lab with bioinformat-

ics work to illustrate the interlinking of lab practices and downstream effects. In our dem-

onstration course, we used nanopore sequencing to train nanobiology students, but the

model is easily customizable to suit students of different educational backgrounds or alter-

native technologies. The tools we provide help not only science educators but also biolo-

gists to address many relevant questions in biology.

Introduction

What defines a biologist? In short, a biologist is a person who studies life and living organisms.

But this simple definition hides the true complexity of the field of biology. Biology covers

diverse topics such as molecular biology, structural biology, ecology, evolution, genetics,

microbiology, immunology, and biotechnology. Importantly, most (if not all) of these topics

have undergone incredible progress due to rapid discoveries and technological advances[1,2].

As such, a modern biologist has the inevitable tasks of adapting to rapid change and mastering

new knowledge and technology.

One of the most important revolutions in the field of biology was caused by the develop-

ment of next-generation sequencing (NGS) technologies. Using massively parallel processing

of samples, NGS dramatically reduces sequencing time and costs, enabling the sequencing of

entire genomes. Currently, genome sequencing and analysis have become a crucial component

in biology, as evidenced by recent scientific breakthroughs [3,4] and by the exponential

increase of reported genomes on GenBank (e.g., from 30,000 sequenced prokaryotic genomes

in 2014 [5] to 183,000 in 2018 [https://www.ncbi.nlm.nih.gov/genome/browse/#!/overview/], a

6-fold increase in only 4 years). Thus, not only do biologists need to adapt and learn how to

use these emerging technologies, they also need to learn how to mine the ever-growing moun-

tain of genomic information they generate, which requires bioinformatics skills. Now, the

question is how do we train this generation of biologists so that they have the required compu-

tational skills?

Bridging bioinformatics to biologists

Over the past few years, we have taught introductory bioinformatics to undergraduate (second

year BSc) biology students with basic molecular biology training. They are versed in standard

techniques (such as basic DNA extractions and PCR) but are unfamiliar with specific DNA

sequencing chemistries. In the past, this mandatory computational course was entirely discon-

nected from lab work, making it hard for students to grasp how bioinformatics and biology

are connected. To address this disconnect, we here share a more integrated approach to teach

bioinformatics to biology students. These students have a conceptual grasp of sequencing and

bioinformatics but not the detailed view on how various lab techniques (e.g., NGS chemistries)

combined with various analysis methods (e.g., assembly, variant calling) can be used to answer

specific biological questions and how these techniques interact with each other.

The overall idea is to start from where students are already familiar (i.e., biology) and

expand from there. There are 4 types of learning activities in the course (see Fig 1): (1) lectures

in which students receive classroom instruction on bioinformatics topics, (2) practical sessions

in which students apply the material from the lectures to solve practical exercises supervised

by teaching assistants, (3) lab work in which sequencing data are generated, and (4) a project

that applies the bioinformatics concepts learned in the lectures on data from the lab work. This
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is concluded by a poster session in which all students get to review each other’s work. A week

by week overview can be found in S1 Table.

The formula presented here focuses on introducing bioinformatics to biology students,

helping them to acquire the skills and insights needed to operate and troubleshoot existing

algorithms. The course does not focus on developing skills needed to create novel algorithms

or models.

During the pilot run of this course in the academic year from 2017 to 2018, we used Oxford

Nanopore Technologies (ONT) MinION sequencing as a data generation platform. This plat-

form was selected because it has low capital cost and is a new exciting technology easy to

engage students with. Real-time data acquisition gives immediate feedback to the students that

data are being produced, even if they have to keep it running overnight. It is easy to imagine

they could get one of these devices at home. Students can see themselves as scientists, as people

discovering something new, an idea that we really like to foster. Ultimately, any fast, cheap,

and accessible sequencing platform would be good for our goals, yet only MinION is currently

available.

MinION has already made its way into undergraduate and graduate courses [6,7]. Some of

these courses focused on data analysis; they organized hackathons in which students needed to

devise a pipeline to infer the ingredients of food DNA samples or identify human DNA sam-

ples[6]. Others developed the application of MinION further by also teaching laboratory tech-

niques for DNA extraction and sequencing library preparation[7].

Additionally, the portable size of ONT’s MinION and the simplicity of library preparation

enable scientists to use this technology in a wide variety of environments, including a standard

classroom[8–10]. As such, this device is not only attractive for researchers but also for educa-

tional instructors: If this technology is empowering scientists to embark on novel scientific

studies, why not also empower young students to embark on effective educational

experiences?

Fig 1. Course overview. Integrated bioinformatics training with time on the x-axis. Lectures (green) give students the necessary background to execute and understand

Practical (blue) and Project (purple) sessions. Laboratory sessions (yellow) enable students to employ their biological background and prepare their own DNA libraries

from samples of interest. Libraries prepared by each student group are pooled together and run on a MinION device (Oxford Nanopore Technologies, Oxford, UK),

generating data to be processed in Project sessions. Backup data previously prepared from the same samples can be used if the students’ MinION run fails to provide

enough quality data for analysis. In the Practical sessions, students learn to use established bioinformatics methods, with an emphasis on processing long-read data (see Fig

2, S1 Table and S1 Text). In the Project sessions, they then apply these methods to the generated data to answer specific research questions. After intragroup and

intergroup discussions of results, students prepare their final project report and present their results in a poster format.

https://doi.org/10.1371/journal.pcbi.1007314.g001
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Integrating nanopore sequencing in the classroom

The challenge set for students in our course was to identify and discover novel phages from

environmental samples and to reconstruct complete genomes from single-isolate and metage-

nomics samples. The students had to address the following research questions, which were

introduced at the very beginning of the course: (1) Can we assemble and annotate fully closed

genomes from a small number of long reads? (2) What are the considerations for the assembly

of metagenomics samples compared to single isolates? (3) What is the advantage of long-read

sequencing for the analysis of metagenomics samples? (4) Can we identify virulent and tem-

perate phages in metagenomics samples? (5) What genes of interest can we find in both bacte-

ria and phage genomes?

Twenty-four groups of 4 students (96 total) prepared their own DNA libraries of various

single-isolate bacterial, bacteriophage, and metagenomic samples in the classroom. Number of

groups and their size were determined to allow for sufficient supervision within the available

lab space. If possible, smaller groups are preferable to increase the hands-on time of each stu-

dent. We would like to emphasize the benefits of having multiple groups working on different

related samples (e.g., each barcode represents a similar but different microbial isolate). This

allows groups to initiate discussions about differences in their own findings—such as unique

sequences, structural variants and presence and/or absence of genes—and hypothesize how

those differences may influence the phenotypic traits of their sample. This exercise helps them

further appreciate the value of bioinformatics skills in a biological setting and how the 2 are

ultimately connected.

The DNA libraries were prepared using the rapid barcoding kit (SQK-RBK004), which has

fewer steps than other available kits and thus allows the procedure to be completed within the

3-hour timeframe of the class. For longer sessions, the ligation sequencing kit (SQK-LSK109)

could be used, increasing the robustness and throughput of the experiment. Both kits allow for

barcoding of multiple genomic DNA samples. Samples were prepared individually by each

group and then barcoded and pooled together at different proportions depending on the suc-

cess of each group. When sequencing runs failed, the student was supplied with previously

generated backup data.

After running DNA samples in MinION, students performed quality control of their data

and then assembled the genomes. As we focused on teaching technical concepts of bioinfor-

matics, we provided a computational guide (see S1 Text and summary in Fig 2) containing

ready-to-go commands and scripts for commonly performed tasks that can be broadly used

with MinION data. To facilitate the use of this guide, we provided a standalone virtual

machine containing all required software used in S1 Text.

Once data processing was completed, students pursued a variety of research questions, such

as investigating the genomic composition of their bacterial sample as well as the population

composition of their metagenomics sample. For example, students would determine the bacte-

riophage species in their barcoded sample and compare their assembled genome to that of the

closest reference genome found in the National Center for Biotechnology Information (NCBI)

reference sequencing database (RefSeq). In all cases, students found that their assembly had lit-

tle overlap with the reference, prompting discussions about the novelty of the genetic content

in their phage.

Students ran Centrifuge [18], a species classification and quantification tool, on their meta-

genomics sample and generally concluded a mixture of viral and bacterial species. This process

stimulated discussion about a number of course-related topics: (1) limitations of k-mer-based

tools (e.g., k-mers are not always unique to individual species), (2) biases when comparing

against a reference data set (e.g., you can only classify what you have previously observed), (3)
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understanding bacteriophage biology (e.g., phages can integrate their DNA in a bacterial host;

therefore, sequences that are labeled as “bacteria” may actually correspond to integrated phage

DNA), and (4) understanding whether long-read sequencing is advantageous to the scientific

question addressed (e.g., long-read sequencing helps improve assembly quality of metagen-

omes, but the high error rates of the technology still limit its usefulness; here, combining

short-read and long-read data could be the best approach to improved contiguity and base

pair–level accuracy). These topics were framed to explore how they may affect the student’s

computational observations.

Impact of integrated bioinformatics education

Through the integrated approach in our course, students can easily grasp the direct influence of

the experimental protocol on data quality. For example, a student’s excessive pipetting leads to

observably shorter read-length distributions, resulting in fewer unique overlaps in the pairwise

alignments, a less contiguous assembly graph, and ultimately more fragmented assemblies. Fur-

thermore, the setup is sufficiently generic that different scientific questions could be addressed

using this pipeline, and it is sufficiently flexible to adjust to the students’ background.

We experienced increased interest and engagement in our course from both the instructors

and the students. Students were much more interested in the course content because they

could assume scientific responsibility and ownership. Spending several hours or days in the

lab goes a long way to make “scientists-to-be” feel “this is my data.”

The instructors leveraged the practical classes as an opportunity to generate and analyze

data for potential pilot studies, i.e., preliminary data for the next round of grants. In our pilot

version of the course, the experiments were chosen such that they contribute to ongoing

research in the lab. As a result, we generated several follow-up project ideas, one of which

resulted in a master’s thesis on heterogeneity of bacteriophage genomes detected by nanopore

Fig 2. Pipeline for genome assembly using MinION data. First, the barcoded sequences are demultiplexed using

Deepbinner[11] and basecalled using Albacore (Oxford Nanopore Technologies, Oxford, UK). Nanoplot [12] is used

to assess the quality of the sequencing data for downstream processing. If the data have sufficient quality, they are used

for assembly using, e.g., Canu [13]. Confidence on the resulting consensus assembly is obtained using Minimap2[14].

The assembly is polished to remove common mistakes using Nanopolish[15], and then Circlator [16] is used to

determine the zero-based start of the genome, which depends on whether it is a bacterial sequence or a bacteriophage

sequence. Finally, the assembled genome is annotated using Prokka [17]. Please refer to S1 Text for further details.

https://doi.org/10.1371/journal.pcbi.1007314.g002
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sequencing, as well as a tripling of the number of undergraduate lab-rotations in the area of

bioinformatics.

Naturally, many of the assignments, including interpretation and comparison of a genome

assembly from single bacterial isolates to that of viral samples, were open-ended and initially

challenged the students. However, the experience gave them a more realistic impression of aca-

demic research and foundational skills to help them in their future career as modern biologists.

In particular, different samples required different data interpretations, naturally spurring dis-

cussions and collaborations among students. Future editions of such an integrated course

could consider even developing the student ownership further by explaining the “problem”

and asking students to design the DNA sequencing experiments given the boundaries of the

reagents available. With adequate supervision and coaching to include proper controls and

experiments, this could lead to even greater collaboration and ownership by the students.

Conclusion

Considering the fast pace at which sequencing technologies progress and at which genomics

data are generated, it is no longer possible to ignore the urgency of equipping young biologists

with the required skills to manage the amount and type of sequencing data being generated.

Here, we used nanopore sequencing as one possible tool to prepare a new generation of bioin-

formatics-aware modern biologists. Nanopore sequencing offers an exciting opportunity to

not only introduce students to the field of genomics and bioinformatics but also to address

advanced biological and computational problems. Simple customizations of the assignments

are possible to make the course different every year and to make it suitable for teaching stu-

dents of different backgrounds, such as computer science (e.g., toolbox handling, algorithm

understanding), molecular biology (e.g., genomics, sequencing), or medicine (e.g., pathogen

detection, cancer diagnostics). MinION also gives a chance to teach the students how to use

different tools and community-based analysis and the importance of constantly updating their

knowledge of recent technological developments.

The virtual machine and guide provided herein intend to assist science educators and also

geneticists to address timely questions in biology, such as detection of epigenetic modifica-

tions, characterization of human genetic variation, real-time detection of pathogens, character-

ization of structural variation in cancer, and analysis of population transcriptomics.

A walkthrough of ONTassembly of prokaryotic genomes and their viruses is provided in S1

Text. All materials, including the virtual machine image, are available at https://github.com/

AbeelLab/integrated_bioinformatics.

Supporting information

S1 Table. Detailed syllabus. Detailed overview of course activities week by week. Lecture top-

ics, practical topics, and project work align.

(DOCX)

S1 Text. Student walkthrough. Complete student manual with all work to be performed by

students.

(DOCX)
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